Olaf StÃ¹/₄ve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2619292/publications.pdf

Version: 2024-02-01

181 papers 12,552 citations

28274 55 h-index 25787 108 g-index

186 all docs

186 docs citations

186 times ranked 12103 citing authors

#	Article	IF	CITATIONS
1	Defining the clinical course of multiple sclerosis. Neurology, 2014, 83, 278-286.	1.1	2,344
2	The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature, 2002, 420, 78-84.	27.8	1,060
3	Immune surveillance in multiple sclerosis patients treated with natalizumab. Annals of Neurology, 2006, 59, 743-747.	5 . 3	414
4	Type II monocytes modulate T cell–mediated central nervous system autoimmune disease. Nature Medicine, 2007, 13, 935-943.	30.7	407
5	The incidence and prevalence of psychiatric disorders in multiple sclerosis: A systematic review. Multiple Sclerosis Journal, 2015, 21, 305-317.	3.0	381
6	Interferon beta in the treatment of multiple sclerosis. Neurology, 1998, 51, 682-689.	1.1	344
7	Interferon \hat{I}^2 -1b decreases the migration of T lymphocytes in vitro: Effects on matrix metalloproteinase-9. Annals of Neurology, 1996, 40, 853-863.	5 . 3	338
8	A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: Overview. Multiple Sclerosis Journal, 2015, 21, 263-281.	3.0	273
9	Altered CD4+/CD8+ T-Cell Ratios in Cerebrospinal Fluid of Natalizumab-Treated Patients With Multiple Sclerosis. Archives of Neurology, 2006, 63, 1383.	4.5	271
10	Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurology, The, 2013, 12, 756-767.	10.2	205
11	The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nature Reviews Neurology, 2013, 9, 267-276.	10.1	181
12	Decrease in the Numbers of Dendritic Cells and CD4+ T Cells in Cerebral Perivascular Spaces Due to Natalizumab. Archives of Neurology, 2008, 65, 1596.	4.5	179
13	The increasing incidence and prevalence of female multiple sclerosis—A critical analysis of potential environmental factors. Autoimmunity Reviews, 2011, 10, 495-502.	5.8	174
14	Optical coherence tomography in multiple sclerosis. Lancet Neurology, The, 2006, 5, 853-863.	10.2	165
15	High-Dose Immunosuppressive Therapy and Autologous Hematopoietic Cell Transplantation for Relapsing-Remitting Multiple Sclerosis (HALT-MS). JAMA Neurology, 2015, 72, 159.	9.0	158
16	Cell-based therapeutic strategies for multiple sclerosis. Brain, 2017, 140, 2776-2796.	7.6	139
17	B lymphocytes in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e104.	6.0	132
18	A systematic review of the incidence and prevalence of autoimmune disease in multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 282-293.	3.0	131

#	Article	IF	CITATIONS
19	A systematic review of the incidence and prevalence of cardiac, cerebrovascular, and peripheral vascular disease in multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 318-331.	3.0	131
20	Plasma Exchange in Neuroimmunological Disorders. Archives of Neurology, 2006, 63, 930.	4.5	130
21	Clinical Stabilization and Effective B-Lymphocyte Depletion in the Cerebrospinal Fluid and Peripheral Blood of a Patient With Fulminant Relapsing-Remitting Multiple Sclerosis. Archives of Neurology, 2005, 62, 1620-3.	4.5	124
22	Immunological Aspects of Approved MS Therapeutics. Frontiers in Immunology, 2019, 10, 1564.	4.8	117
23	Memory B cells from a subset of treatmentâ€naìve relapsingâ€remitting multiple sclerosis patients elicit CD4 ⁺ Tâ€cell proliferation and IFNâ€Î³ production in response to myelin basic protein and myelin oligodendrocyte glycoprotein. European Journal of Immunology, 2010, 40, 2942-2956.	2.9	114
24	Disease Amelioration With Tocilizumab in a Treatment-Resistant Patient With Neuromyelitis Optica. JAMA Neurology, 2013, 70, 390.	9.0	112
25	Natalizumab and Progressive Multifocal Leukoencephalopathy. Archives of Neurology, 2010, 67, 923-30.	4.5	105
26	Statins â€" a cure-all for the brain?. Nature Reviews Neuroscience, 2005, 6, 325-331.	10.2	104
27	Chemokine-enhanced migration of human peripheral blood mononuclear cells is antagonized by interferon beta-1b through an effect on matrix metalloproteinase-9. Journal of Neuroimmunology, 1997, 80, 38-46.	2.3	102
28	A systematic review of the incidence and prevalence of sleep disorders and seizure disorders in multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 342-349.	3.0	100
29	Pharmacological Properties, Toxicology and Scientific Rationale for the use of Natalizumab (Tysabri®) in Inflammatory Diseases. CNS Neuroscience & Therapeutics, 2007, 13, 79-95.	4.0	98
30	Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. Journal of Clinical Investigation, 2006, 116, 1037-1044.	8.2	98
31	Statins as potential therapeutic agents in neuroinflammatory disorders. Current Opinion in Neurology, 2003, 16, 393-401.	3.6	97
32	Safety and Efficacy of Siponimod (BAF312) in Patients With Relapsing-Remitting Multiple Sclerosis. JAMA Neurology, 2016, 73, 1089.	9.0	92
33	The Role of the MHC Class II Transactivator in Class II Expression and Antigen Presentation by Astrocytes and in Susceptibility to Central Nervous System Autoimmune Disease. Journal of Immunology, 2002, 169, 6720-6732.	0.8	83
34	Analyses of cerebrospinal fluid in the diagnosis and monitoring of multiple sclerosis. Journal of Neuroimmunology, 2010, 219, 1-7.	2.3	82
35	A systematic review of the incidence and prevalence of cancer in multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 294-304.	3.0	79
36	Statins as potential therapeutic agents in neuroinflammatory disorders. Current Opinion in Neurology, 2003, 16, 393-401.	3.6	78

#	Article	IF	Citations
37	Primary central nervous system lymphoma in a patient treated with natalizumab. Annals of Neurology, 2009, 66, 403-406.	5. 3	78
38	Requirement for endocytic antigen processing and influence of invariant chain and H-2M deficiencies in CNS autoimmunity. Journal of Clinical Investigation, 2001, 108, 1133-1139.	8.2	78
39	Are statins a treatment option for multiple sclerosis?. Lancet Neurology, The, 2004, 3, 369-371.	10.2	77
40	Immune response to immunotherapy: the role of neutralising antibodies to interferon beta in the treatment of multiple sclerosis. Lancet Neurology, The, 2005, 4, 403-412.	10.2	77
41	Effects of cladribine tablets on lymphocyte subsets in patients with multiple sclerosis: an extended analysis of surface markers. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641985498.	3.5	76
42	α4-Integrin antagonism with natalizumab. Journal of Neurology, 2008, 255, 58-65.	3.6	74
43	Plasma Exchange in Neuroimmunological Disorders. Archives of Neurology, 2006, 63, 1066.	4.5	71
44	Intense immunosuppression in patients with rapidly worsening multiple sclerosis: treatment guidelines for the clinician. Lancet Neurology, The, 2008, 7, 173-183.	10.2	70
45	Rituximab Therapy Reduces Organ-Specific T Cell Responses and Ameliorates Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2011, 6, e17103.	2.5	69
46	Dimethyl fumarate in relapsing–remitting multiple sclerosis: rationale, mechanisms of action, pharmacokinetics, efficacy and safety. Expert Review of Neurotherapeutics, 2015, 15, 339-346.	2.8	69
47	Therapeutic Advances and Future Prospects in Progressive Forms of Multiple Sclerosis. Neurotherapeutics, 2016, 13, 58-69.	4.4	69
48	B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641876169.	3.5	67
49	Migratory behavior of lymphocytes isolated from multiple sclerosis patients: Effects of interferon ?-1b therapy. Annals of Neurology, 1999, 46, 319-324.	5.3	66
50	Potential Risk of Progressive Multifocal Leukoencephalopathy With Natalizumab Therapy. Archives of Neurology, 2007, 64, 169.	4.5	65
51	A critical appraisal of treatment decisions in multiple sclerosis—old versus new. Nature Reviews Neurology, 2011, 7, 255-262.	10.1	64
52	Disease-Modifying Agents for Multiple Sclerosis. Drugs, 2008, 68, 2445-2468.	10.9	63
53	Multiple sclerosis: Mitoxantrone promotes differential effects on immunocompetent cells in vitro. Journal of Neuroimmunology, 2005, 168, 128-137.	2.3	60
54	Statins in the treatment of central nervous system autoimmune disease. Journal of Neuroimmunology, 2006, 178, 140-148.	2.3	59

#	Article	IF	Citations
55	Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder. JAMA Neurology, 2015, 72, 815.	9.0	59
56	Review: Cyclophosphamide in multiple sclerosis: scientific rationale, history and novel treatment paradigms. Therapeutic Advances in Neurological Disorders, 2009, 2, 357-368.	3.5	57
57	Multiple Sclerosis in the Elderly Patient. Drugs and Aging, 2010, 27, 283-294.	2.7	55
58	Immunopathogenesis of Neuromyelitis Optica. Advances in Immunology, 2014, 121, 213-242.	2.2	55
59	Immunophenotyping of Cerebrospinal Fluid Cells in Multiple Sclerosis. JAMA Neurology, 2014, 71, 905.	9.0	54
60	Does risk stratification decrease the risk of natalizumab-associated PML? Where is the evidence?. Multiple Sclerosis Journal, 2014, 20, 1304-1305.	3.0	53
61	Corticosteroids for Multiple Sclerosis: I. Application for Treating Exacerbations. Neurotherapeutics, 2007, 4, 618-626.	4.4	52
62	Alemtuzumab. Neurology, 2014, 83, 87-97.	1.1	52
63	Reactivation of Human Herpesvirus-6 in Natalizumab Treated Multiple Sclerosis Patients. PLoS ONE, 2008, 3, e2028.	2.5	51
64	Effect of Template Reporting of Brain MRIs for Multiple Sclerosis on Report Thoroughness and Neurologist-Rated Quality: Results of a Prospective Quality Improvement Project. Journal of the American College of Radiology, 2017, 14, 371-379.e1.	1.8	49
65	Current Treatment Strategies for Multiple Sclerosis - Efficacy Versus Neurological Adverse Effects. Current Pharmaceutical Design, 2012, 18, 209-219.	1.9	48
66	Idiopathic Transverse Myelitis and Neuromyelitis Optica: Clinical Profiles, Pathophysiology and Therapeutic Choices. Current Neuropharmacology, 2011, 9, 417-428.	2.9	47
67	Malignant glioma cells use MHC class II transactivator (CIITA) promoters III and IV to direct IFN- ¹³ -inducible CIITA expression and can function as nonprofessional antigen presenting cells in endocytic processing and CD4+T-cell activation. Glia, 2001, 36, 391-405.	4.9	46
68	The spectrum of autoimmune encephalopathies. Journal of Neuroimmunology, 2015, 287, 93-97.	2.3	46
69	Inhibition by Mitoxantrone of In Vitro Migration of Immunocompetent Cells. Archives of Neurology, 2006, 63, 1572.	4.5	43
70	Pharmacological Treatment of Early Multiple Sclerosis. Drugs, 2008, 68, 73-83.	10.9	41
71	The temporal and causal relationship between inflammation and neurodegeneration in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 876-886.	3.0	41
72	PEG Minocycline-Liposomes Ameliorate CNS Autoimmune Disease. PLoS ONE, 2009, 4, e4151.	2.5	41

#	Article	IF	CITATIONS
73	The incidence and prevalence of comorbid gastrointestinal, musculoskeletal, ocular, pulmonary, and renal disorders in multiple sclerosis: A systematic review. Multiple Sclerosis Journal, 2015, 21, 332-341.	3.0	39
74	Evolution of clinical trials in multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641982654.	3.5	37
75	The effects of natalizumab on the innate and adaptive immune system in the central nervous system. Journal of the Neurological Sciences, 2008, 274, 39-41.	0.6	36
76	Choroid plexus volumetrics and brain inflammation in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
77	Lymph node-derived donor encephalitogenic CD4+T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet. Journal of Neuroinflammation, 2011, 8, 73.	7.2	33
78	Immune surveillance of the central nervous system in multiple sclerosis — Relevance for therapy and experimental models. Journal of Neuroimmunology, 2014, 276, 9-17.	2.3	30
79	B cell-directed therapies in multiple sclerosis. Neurodegenerative Disease Management, 2016, 6, 37-47.	2.2	30
80	A randomized, blinded, parallel-group, pilot trial of mycophenolate mofetil (CellCept) compared with interferon beta-1a (Avonex) in patients with relapsing-remitting multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2010, 3, 15-28.	3. 5	29
81	Diagnostic and therapeutic strategies for management of autoimmune encephalopathies. Expert Review of Neurotherapeutics, 2016, 16, 937-949.	2.8	29
82	The role of B cells in multiple sclerosis: Current and future therapies. Cellular Immunology, 2019, 339, 10-23.	3.0	29
83	Immunomodulatory treatment strategies in multiple sclerosis. Journal of Neurology, 2008, 255, 15-21.	3.6	27
84	Diclofenac reduces the risk of Alzheimer's disease: a pilot analysis of NSAIDs in two US veteran populations. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642093567.	3 . 5	27
85	The Combination of Interferonâ€Beta and HMGâ€CoA Reductase Inhibition in Multiple Sclerosis: Enthusiasm Lost too Soon?. CNS Neuroscience and Therapeutics, 2010, 16, 362-373.	3.9	26
86	Adverse event profile differences between rituximab and ocrelizumab: Findings from the FDA Adverse Event Reporting Database. Multiple Sclerosis Journal, 2021, 27, 1066-1076.	3.0	26
87	<i>Para</i> -dichlorobenzene toxicity – a review of potential neurotoxic manifestations. Therapeutic Advances in Neurological Disorders, 2014, 7, 177-187.	3 . 5	25
88	Management of Secondary Progressive Multiple Sclerosis: Prophylactic Treatmentâ€"Past, Present, and Future Aspects. Current Treatment Options in Neurology, 2013, 15, 241-258.	1.8	24
89	Effect of PF-00547659 on Central Nervous System Immune Surveillance and Circulating β7+ T Cells in Crohn's Disease: Report of the TOSCA Study. Journal of Crohn's and Colitis, 2018, 12, 188-196.	1.3	24
90	Similar Biophysical Abnormalities in Glomeruli and Podocytes from Two Distinct Models. Journal of the American Society of Nephrology: JASN, 2018, 29, 1501-1512.	6.1	23

#	Article	IF	Citations
91	Central nervous system infections – a potential complication of systemic immunotherapy. Current Opinion in Neurology, 2006, 19, 271-276.	3.6	22
92	CD19 as a molecular target in CNS autoimmunity. Acta Neuropathologica, 2014, 128, 177-190.	7.7	22
93	Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control?. Frontiers in Neurology, 2020, 11, 607766.	2.4	22
94	A genetic variant of the anti-apoptotic protein Akt predicts natalizumab-induced lymphocytosis and post-natalizumab multiple sclerosis reactivation. Multiple Sclerosis Journal, 2013, 19, 59-68.	3.0	21
95	Natalizumab for Multiple Sclerosis: A Case in Point for the Impact of Translational Neuroimmunology. Journal of Immunology, 2017, 198, 1381-1386.	0.8	21
96	Statins and their potential targets in multiple sclerosis therapy. Expert Opinion on Therapeutic Targets, 2003, 7, 613-622.	3.4	20
97	Aging and efficacy of disease-modifying therapies in multiple sclerosis: a meta-analysis of clinical trials. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642096901.	3.5	20
98	Direct and consensual murine pupillary reflex metrics: Establishing normative values. Autonomic Neuroscience: Basic and Clinical, 2009, 151, 164-167.	2.8	19
99	Mitoxantrone as a potential therapy for primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2004, 10, S58-S61.	3.0	18
100	Developmental maturation of innate immune cell function correlates with susceptibility to central nervous system autoimmunity. European Journal of Immunology, 2013, 43, 2078-2088.	2.9	18
101	Patients characteristics influencing the longitudinal utilization of steroids in multiple sclerosis – an observational study. European Journal of Clinical Investigation, 2015, 45, 587-593.	3.4	17
102	Ocrelizumab for the treatment of relapsing-remitting multiple sclerosis. Expert Review of Neurotherapeutics, 2016, 16, 1131-1139.	2.8	17
103	MAdCAM-1-Mediated Intestinal Lymphocyte Homing Is Critical for the Development of Active Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2019, 10, 903.	4.8	17
104	Therapeutic Potential of Small Interfering RNA for Central Nervous System Diseases. Archives of Neurology, 2005, 62, 1810.	4.5	16
105	Human Aquaporin 4 ₂₈₁₋₃₀₀ Is the Immunodominant Linear Determinant in the Context of HLA-DRB1*03:01. Archives of Neurology, 2012, 69, 1125-31.	4.5	16
106	Clinical management of multiple sclerosis and neuromyelitis optica with therapeutic monoclonal antibodies: approved therapies and emerging candidates. Expert Review of Clinical Immunology, 2015, 11, 93-108.	3.0	16
107	Update on monitoring and adverse effects of approved second-generation disease-modifying therapies in relapsing forms of multiple sclerosis. Current Opinion in Neurology, 2016, 29, 278-285.	3.6	16
108	Neurofilament light chain. Neurology, 2019, 92, 451-452.	1.1	16

#	Article	IF	Citations
109	Patient-specific factors modulate leukocyte response in dimethyl fumarate treated MS patients. PLoS ONE, 2020, 15, e0228617.	2.5	16
110	Approved and Future Pharmacotherapy for Multiple Sclerosis. Neurologist, 2002, 8, 290-301.	0.7	15
111	Knowns and unknowns in the future of multiple sclerosis treatment. Journal of the Neurological Sciences, 2009, 287, S30-S36.	0.6	14
112	Reelin depletion protects against autoimmune encephalomyelitis by decreasing vascular adhesion of leukocytes. Science Translational Medicine, 2020, 12, .	12.4	14
113	The neonatal CNS is not conducive for encephalitogenic Th1 T cells and B cells during experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2013, 10, 67.	7.2	12
114	Primary progressive multiple sclerosisâ€"why we are failing. Lancet, The, 2016, 387, 1032-1034.	13.7	12
115	Multiple sclerosis therapy: An update on recently finished trials. Journal of Neurology, 2007, 254, 1473-1490.	3.6	11
116	DNA-based vaccines: the future of multiple sclerosis therapy? Expert Review of Neurotherapeutics, 2008, 8, 351-360.	2.8	11
117	Translational Research in Neurology and Neuroscience 2010. Archives of Neurology, 2010, 67, 1307-15.	4.5	11
118	Natalizumab: Perspectives from the Bench to Bedside. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a029066.	6.2	11
119	Defining standard enzymatic dissociation methods for individual brains and spinal cords in EAE. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e437.	6.0	11
120	CD11c $<$ sup $>+sup>CD88<sup>+sup>CD317<sup>+sup>myeloid cells are critical mediators of persistent CNS autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .$	7.1	11
121	Disease-modifying therapy prescription patterns in people with multiple sclerosis by age. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110064.	3.5	11
122	Intractable and highly active relapsing multiple sclerosis & Camp; ndash; role of alemtuzumab. Neuropsychiatric Disease and Treatment, 2015, 11, 2405.	2.2	10
123	B-cell–targeted therapies in relapsing forms of MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e405.	6.0	10
124	Emerging drugs for primary progressive multiple sclerosis. Expert Opinion on Emerging Drugs, 2018, 23, 97-110.	2.4	10
125	Clinical trials in multiple sclerosis: potential future trial designs. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641984709.	3.5	10
126	α4-integrin deficiency in B cells does not affect disease in a T-cell–mediated EAE disease model. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e563.	6.0	9

#	Article	IF	Citations
127	Efficacy of Disease Modifying Therapies in Progressive MS and How Immune Senescence May Explain Their Failure. Frontiers in Neurology, 2022, 13, 854390.	2.4	9
128	Multiple Sclerosis Disease Progression and Paradichlorobenzene. JAMA Neurology, 2014, 71, 228.	9.0	8
129	Managing Disability in Progressive Multiple Sclerosis. Current Treatment Options in Neurology, 2016, 18, 27.	1.8	8
130	<scp>TLR</scp> 3 agonism reâ€establishes <scp>CNS</scp> immune competence during <i>α</i> 4â€integrin deficiency. Annals of Clinical and Translational Neurology, 2018, 5, 1543-1561.	3.7	8
131	Simplification of combination antiretroviral therapy (cART) and the brain—a real-life experience. Journal of NeuroVirology, 2019, 25, 174-182.	2.1	8
132	Apolipoprotein E receptor 2 deficiency decreases endothelial adhesion of monocytes and protects against autoimmune encephalomyelitis. Science Immunology, 2021, 6, .	11.9	8
133	Revised criteria for neuromyelitis optica—a new diagnostic standard?. Nature Clinical Practice Neurology, 2007, 3, 132-133.	2.5	7
134	Isoniazid in autoimmunity: a trigger for multiple sclerosis?. Therapeutic Advances in Neurological Disorders, 2014, 7, 253-256.	3.5	7
135	Natalizumab to fingolimod—the washout whitewash. Nature Reviews Neurology, 2014, 10, 311-313.	10.1	7
136	Clinical trials in multiple sclerosis: milestones. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641878549.	3.5	7
137	Trials and therapies in secondary progressive MS, simplified. Nature Reviews Neurology, 2019, 15, 431-432.	10.1	7
138	A Single Amino Acid Substitution Prevents Recognition of a Dominant Human Aquaporin-4 Determinant in the Context of HLA-DRB1*03:01 by a Murine TCR. PLoS ONE, 2016, 11, e0152720.	2.5	7
139	IL-12/IL-23p40 Is Highly Expressed in Secondary Lymphoid Organs and the CNS during All Stages of EAE, but Its Deletion Does Not Affect Disease Perpetuation. PLoS ONE, 2016, 11, e0165248.	2.5	7
140	Anticipated benefits and surprising effects of daclizumab in multiple sclerosis. Lancet Neurology, The, 2010, 9, 337-338.	10.2	6
141	From injection therapies to natalizumab: views on the treatment of multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2012, 5, 97-104.	3.5	6
142	Acute relapse after initiation of Siponimod in a patient with secondary progressive MS. Journal of Neurology, 2016, 263, 606-610.	3.6	6
143	Persistent severe lymphopenia 5 years after dimethyl fumarate discontinuation. Multiple Sclerosis Journal, 2021, 27, 1306-1308.	3.0	6
144	Laquinimod has no effects on brain volume or cellular CNS composition in the F1 3xTg-AD/C3H mouse model of Alzheimer's disease. Journal of Neuroimmunology, 2017, 309, 100-110.	2.3	5

#	Article	IF	Citations
145	Limitations of cell-lineage-specific non-dynamic gene recombination in CD11c.Cre+ITGA4fl/fl mice. Journal of Neuroimmunology, 2020, 344, 577245.	2.3	5
146	Should ocrelizumab be used in non-active primary progressive multiple sclerosis? Time for a re-assessment. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642199050.	3.5	5
147	Genetic Polymorphism at Codon 129 of the Prion Protein Gene Is Not Associated With Multiple Sclerosis. Archives of Neurology, 2009, 66, 280-1.	4.5	4
148	Firategrastâ€"natalizumab in a pill?. Lancet Neurology, The, 2012, 11, 120-121.	10.2	4
149	Multiple sclerosis drugs: how much bang for the buck?. Lancet Neurology, The, 2015, 14, 460-461.	10.2	4
150	Will Biomarkers Determine What Is Next in Multiple Sclerosis?. JAMA Neurology, 2016, 73, 496.	9.0	4
151	Presenilin1 regulates Th1 and Th17 effector responses but is not required for experimental autoimmune encephalomyelitis. PLoS ONE, 2018, 13, e0200752.	2.5	4
152	A bird's-eye view of T cells during natalizumab therapy. Neurology, 2013, 81, 1372-1373.	1.1	3
153	Does Natalizumab Therapy Benefit Patients With Multiple Sclerosis?. JAMA Neurology, 2014, 71, 945.	9.0	3
154	Treatment Decisions for Patients With Active Multiple Sclerosis. JAMA Neurology, 2015, 72, 387.	9.0	3
155	High Incidence of Post–Lumbar Puncture Headaches in Patients With Multiple Sclerosis Treated With Natalizumab: Role of Intrathecal Leukocytes. Archives of Neurology, 2007, 64, 1055.	4.5	2
156	Natalizumab: increased vigilance is required in treating patients with multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2008, 1, 155-156.	3.5	2
157	Progressive multiple sclerosis: desperately seeking remedy. Lancet Neurology, The, 2013, 12, 840-841.	10.2	2
158	The genetics of natalizumab hypersensitivity. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e52.	6.0	2
159	Natalizumab to fingolimod. Neurology, 2015, 85, 14-15.	1.1	2
160	Spotlight on daclizumab: its potential in the treatment of multiple sclerosis. Degenerative Neurological and Neuromuscular Disease, 2016, Volume 6, 95-109.	1.3	2
161	Vestibular hypofunction after monosodium glutamate ingestion: broadening the spectrum of †Chinese restaurant syndrome†M. Journal of Neurology, 2016, 263, 1027-1028.	3.6	2
162	Natalizumab wearing-off effect. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e706.	6.0	2

#	Article	IF	CITATIONS
163	Systems Approaches to Unravel T Cell Function and Therapeutic Potential in Autoimmune Disease. Journal of Immunology, 2021, 206, 669-675.	0.8	2
164	Treatment of Severe Relapsing-Remitting Multiple Sclerosis with High-Dose Immunosuppressive Therapy and Autologous Hematopoietic Cell Transplantation: Early Results of the HALT MS Clinical Trial (Immune Tolerance Network: ITN033AI). Blood, 2011, 118, 3075-3075.	1.4	2
165	Biological Significance of Anti–SARS-CoV-2 Antibodies. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	2
166	Cognitive Decline in Older People with Multiple Sclerosis—A Narrative Review of the Literature. Geriatrics (Switzerland), 2022, 7, 61.	1.7	2
167	Is 1+1 0, 1, 2, or 11? Arithmetics of antiinflammatory agents in autoimmunity. Experimental Neurology, 2009, 217, 4-6.	4.1	1
168	Heat exposure and bicycling trigger recurrent aseptic meningitis: a case report. BMC Neurology, 2014, 14, 230.	1.8	1
169	The major histocompatibility complex and antibodyâ€mediated limbic encephalitis. Annals of Neurology, 2017, 81, 181-182.	5.3	1
170	Normal intrathecal leukocyte cell number and composition do not decrease the incidence of post–lumbar puncture headache. Journal of Neuroimmunology, 2017, 310, 69-71.	2.3	1
171	PDCB does not promote CNS autoimmunity in the context of genetic susceptibility but worsens its outcome. Journal of Neuroimmunology, 2018, 323, 53-55.	2.3	1
172	Lymphomatoid papulosis in a patient treated with glatiramer acetate and the glatiramoid Glatopa for multiple sclerosis: A case report. Journal of Central Nervous System Disease, 2021, 13, 117957352110537.	1.9	1
173	To the editors: Impact of mass vaccination on SARS-CoV-2 infections among multiple sclerosis patients taking immunomodulatory disease-modifying therapies in England. Multiple Sclerosis and Related Disorders, 2022, 59, 103541.	2.0	1
174	Testing effects of glatiramer acetate and fingolimod in an infectious model of CNS immune surveillance. Journal of Neuroimmunology, 2014, 276, 232-235.	2.3	0
175	Smoking Beyond Multiple Sclerosis Diagnosis. JAMA Neurology, 2015, 72, 1105.	9.0	O
176	Targeting "bad―B cells in multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e283.	6.0	0
177	WED 183â€Cladribine tablets effects on t cell subsets in patients with early ms. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, A25.2-A25.	1.9	0
178	WED 186â€Effect of cladribine tablets on immune cells in patients with ms. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, A26.2-A26.	1.9	0
179	The antioxidant MnTBAP does not effectively downregulate CD4 expression in T cells in vivo. Journal of Neuroimmunology, 2021, 354, 577544.	2.3	0
180	Treatment of Severe Relapsing-Remitting Multiple Sclerosis with High-Dose Immunosuppressive Therapy and Autologous Hematopoietic Cell Transplantation: 2-Year Follow-up Results of the HALT MS Clinical Trial (Immune Tolerance Network: ITN033AI). Blood, 2012, 120, 962-962.	1.4	0

#	Article	IF	CITATIONS
181	Utilization of a neurology specialty service by primary care providers for headache management at a tertiary care hospital. Journal of Central Nervous System Disease, 2022, 14, 117957352211131.	1.9	O