Josef Anrather

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2618946/publications.pdf Version: 2024-02-01

LOSEE ANDATHED

#	Article	IF	CITATIONS
1	The immunology of stroke: from mechanisms to translation. Nature Medicine, 2011, 17, 796-808.	30.7	2,006
2	Carbon Monoxide Generated by Heme Oxygenase 1 Suppresses Endothelial Cell Apoptosis. Journal of Experimental Medicine, 2000, 192, 1015-1026.	8.5	910
3	Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδT cells. Nature Medicine, 2016, 22, 516-523.	30.7	770
4	Inflammation and Stroke: An Overview. Neurotherapeutics, 2016, 13, 661-670.	4.4	631
5	Effects of COVID-19 on the Nervous System. Cell, 2020, 183, 16-27.e1.	28.9	526
6	Immune responses to stroke: mechanisms, modulation, and therapeutic potential. Journal of Clinical Investigation, 2020, 130, 2777-2788.	8.2	344
7	NF-κB Regulates Phagocytic NADPH Oxidase by Inducing the Expression of gp91. Journal of Biological Chemistry, 2006, 281, 5657-5667.	3.4	333
8	Immune interventions in stroke. Nature Reviews Neurology, 2015, 11, 524-535.	10.1	296
9	Size-selective opening of the blood–brain barrier by targeting endothelial sphingosine 1–phosphate receptor 1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4531-4536.	7.1	167
10	Brain Perivascular Macrophages Initiate the Neurovascular Dysfunction of Alzheimer AÎ ² Peptides. Circulation Research, 2017, 121, 258-269.	4.5	159
11	Brain perivascular macrophages: characterization and functional roles in health and disease. Journal of Molecular Medicine, 2017, 95, 1143-1152.	3.9	143
12	Dietary salt promotes cognitive impairment through tau phosphorylation. Nature, 2019, 574, 686-690.	27.8	140
13	Inducible Nitric Oxide Synthase in Neutrophils and Endothelium Contributes to Ischemic Brain Injury in Mice. Journal of Immunology, 2014, 193, 2531-2537.	0.8	112
14	Endothelium-Macrophage Crosstalk Mediates Blood-Brain Barrier Dysfunction in Hypertension. Hypertension, 2020, 76, 795-807.	2.7	91
15	cis-Acting Element-specific Transcriptional Activity of Differentially Phosphorylated Nuclear Factor-IºB. Journal of Biological Chemistry, 2005, 280, 244-252.	3.4	87
16	Spatio-temporal profile, phenotypic diversity, and fate of recruited monocytes into the post-ischemic brain. Journal of Neuroinflammation, 2016, 13, 285.	7.2	83
17	Th17 and Cognitive Impairment: Possible Mechanisms of Action. Frontiers in Neuroanatomy, 2019, 13, 95.	1.7	81
18	Tau induces PSD95–neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration. Nature Neuroscience, 2020, 23, 1079-1089.	14.8	78

JOSEF ANRATHER

#	Article	IF	CITATIONS
19	The Myelin and Lymphocyte Protein MAL Is Required for Binding and Activity of Clostridium perfringens ε-Toxin. PLoS Pathogens, 2015, 11, e1004896.	4.7	69
20	Distinct Commensal Bacterial Signature in the Gut Is Associated With Acute and Long-Term Protection From Ischemic Stroke. Stroke, 2020, 51, 1844-1854.	2.0	60
21	Microbiota differences between commercial breeders impacts the post-stroke immune response. Brain, Behavior, and Immunity, 2017, 66, 23-30.	4.1	58
22	Endogenous Protection from Ischemic Brain Injury by Preconditioned Monocytes. Journal of Neuroscience, 2018, 38, 6722-6736.	3.6	57
23	Diverse Inflammatory Response After Cerebral Microbleeds Includes Coordinated Microglial Migration and Proliferation. Stroke, 2018, 49, 1719-1726.	2.0	53
24	Endothelial CD36 Contributes to Postischemic Brain Injury by Promoting Neutrophil Activation via CSF3. Journal of Neuroscience, 2015, 35, 14783-14793.	3.6	48
25	SUMO2/3 is Associated with Ubiquitinated Protein Aggregates in the Mouse Neocortex after Middle Cerebral Artery Occlusion. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1-5.	4.3	35
26	Stroke affects intestinal immune cell trafficking to the central nervous system. Brain, Behavior, and Immunity, 2021, 96, 295-302.	4.1	34
27	tPA Deficiency Underlies Neurovascular Coupling Dysfunction by Amyloid-β. Journal of Neuroscience, 2020, 40, 8160-8173.	3.6	33
28	Purinergic Signaling Induces Cyclooxygenase-1-Dependent Prostanoid Synthesis in Microglia: Roles in the Outcome of Excitotoxic Brain Injury. PLoS ONE, 2011, 6, e25916.	2.5	30
29	The ubiquitin ligase HERC3 attenuates NF-κB-dependent transcription independently of its enzymatic activity by delivering the RelA subunit for degradation. Nucleic Acids Research, 2015, 43, gkv1064.	14.5	26
30	Lipoprotein Receptor–Related Protein-6 Protects the Brain From Ischemic Injury. Stroke, 2013, 44, 2284-2291.	2.0	25
31	AGO CLIP Reveals an Activated Network for Acute Regulation of Brain Glutamate Homeostasis in Ischemic Stroke. Cell Reports, 2019, 28, 979-991.e6.	6.4	20
32	Biological Networks in Ischemic Tolerance $\hat{a} \in$ Rethinking the Approach to Clinical Conditioning. Translational Stroke Research, 2013, 4, 114-129.	4.2	18
33	Role of microglial and endothelial CD36 in post-ischemic inflammasome activation and interleukin-1Î ² -induced endothelial activation. Brain, Behavior, and Immunity, 2021, 95, 489-501.	4.1	17
34	Ablation of nasal-associated lymphoid tissue does not affect focal ischemic brain injury in mice. PLoS ONE, 2018, 13, e0205470.	2.5	5
35	Inflammation and Immune Response. , 2022, , 117-128.e5.		2
36	Abstract 149: CD36 in Perivascular Macrophages Contributes to Neurovascular and Cognitive Dysfunction and Amyloid Angiopathy in Mice Overexpressing the Alzheimer Aβ Peptide. Stroke, 2018, 49, .	2.0	2

JOSEF ANRATHER

#	Article	IF	CITATIONS
37	Reply to: Mannose-binding lectin—the forgotten molecule?. Nature Medicine, 2011, 17, 1548-1548.	30.7	0
38	EP1 receptors are responsible for COX-2 mediated neurotoxicity. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S424-S424.	4.3	0
39	Activation of angiotensin II (AngII) typeâ€⊋ receptors (AT2R) modulates voltageâ€gated Ca2+ currents in dorsomedial NTS (dmNTS) neurons through nitric oxide (NO). FASEB Journal, 2008, 22, 1168.7.	0.5	0
40	Prostaglandin E2 typeâ€1 (EP1) receptors are required for the cerebrovascular dysfunction induced by angiotensin II (AngII). FASEB Journal, 2008, 22, 1237.2.	0.5	0
41	Cyclooxygenase (COX)â€1 derived prostaglandin E2 (PGE2) acting on its type 1 receptor (EP1R) mediates slowâ€pressor angiotensinâ€II (AngII) hypertension. FASEB Journal, 2009, 23, 802.2.	0.5	0
42	Phospholipases A2 (PLA2) and cyclooxygenase 1 (COXâ€1) are critical for angiotensin II (Angâ€II)â€induced reactive oxygen species (ROS) production and Lâ€type Ca2+ current in subfornical organ (SFO) neurons. FASEB Journal, 2012, 26, .	0.5	0
43	Abstract TMP94: Dietary Salt Impairs Cognitive Function Through Suppression of Endothelial Nitric Oxide Synthesis and Hippocampal BDNF Signaling. Stroke, 2018, 49, .	2.0	0