Zhi-Ming Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/261856/publications.pdf

Version: 2024-02-01

125

all docs

116 6,805 43
papers citations h-index

125

docs citations

h-index g-index

125 7986
times ranked citing authors

64796

79

#	Article	IF	CITATIONS
1	Ecdysoneless Protein Regulates Viral and Cellular mRNA Splicing to Promote Cervical Oncogenesis. Molecular Cancer Research, 2022, 20, 305-318.	3.4	6
2	Protein-RNA Interactome Analysis Reveals Wide Association of Kaposi's Sarcoma-Associated Herpesvirus ORF57 with Host Noncoding RNAs and Polysomes. Journal of Virology, 2022, 96, JVI0178221.	3.4	6
3	Human Papillomavirus Type 16 Circular RNA Is Barely Detectable for the Claimed Biological Activity. MBio, 2022, 13, e0359421.	4.1	17
4	Linking a nuclear lncRNA to cytoplasmic lysosome integrity and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	0
5	HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. International Journal of Molecular Sciences, 2022, 23, 4943.	4.1	22
6	KSHV episome tethering sites on host chromosomes and regulation of latency-lytic switch by CHD4. Cell Reports, 2022, 39, 110788.	6.4	23
7	Reply to Wang et al., "Assessment of the Abundance and Potential Function of Human Papillomavirus Type 16 Circular E7 RNA― MBio, 2022, 13, e0075822.	4.1	1
8	Genome-wide regulation of KSHV RNA splicing by viral RNA-binding protein ORF57. PLoS Pathogens, 2022, 18, e1010311.	4.7	5
9	Correction: Yu et al. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. Int. J. Mol. Sci. 2022, 23, 4943. International Journal of Molecular Sciences, 2022, 23, 7903.	4.1	2
10	Current Status of Human Papillomavirus-Related Head and Neck Cancer: From Viral Genome to Patient Care. Virologica Sinica, 2021, 36, 1284-1302.	3.0	18
11	SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell and Bioscience, 2021, 11, 136.	4.8	140
12	Mouse papillomavirus type 1 (MmuPV1) DNA is frequently integrated in benign tumors by microhomology-mediated end-joining. PLoS Pathogens, 2021, 17, e1009812.	4.7	12
13	Oncogenic HPV promotes the expression of the long noncoding RNA Inc-FANCI-2 through E7 and YY1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31
14	RNA Granules in Antiviral Innate Immunity: A Kaposi's Sarcoma-Associated Herpesvirus Journey. Frontiers in Microbiology, 2021, 12, 794431.	3.5	4
15	Novel EBV LMP-2-affibody and affitoxin in molecular imaging and targeted therapy of nasopharyngeal carcinoma. PLoS Pathogens, 2020, 16, e1008223.	4.7	12
16	SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet, The, 2020, 395, 949-950.	13.7	264
17	Stress keratin 17 enhances papillomavirus infection-induced disease by downregulating T cell recruitment. PLoS Pathogens, 2020, 16, e1008206.	4.7	27
18	KSHV RNA-binding protein ORF57 inhibits P-body formation to promote viral multiplication by interaction with Ago2 and GW182. Nucleic Acids Research, 2019, 47, 9368-9385.	14.5	29

#	Article	IF	Citations
19	CRISPR/Cas9-Mediated Knockout and <i>In Situ</i> Inversion of the ORF57 Gene from All Copies of the Kaposi's Sarcoma-Associated Herpesvirus Genome in BCBL-1 Cells. Journal of Virology, 2019, 93, .	3.4	24
20	Papillomavirus can be transmitted through the blood and produce infections in blood recipients: Evidence from two animal models. Emerging Microbes and Infections, 2019, 8, 1108-1121.	6.5	31
21	Genome-Wide Profiling of Cervical RNA-Binding Proteins Identifies Human Papillomavirus Regulation of RNASEH2A Expression by Viral E7 and E2F1. MBio, 2019, 10, .	4.1	47
22	Circular RNAs and RNase L in PKR activation and virus infection. Cell and Bioscience, 2019, 9, 43.	4.8	11
23	Viral Regulation of RNA Granules in Infected Cells. Virologica Sinica, 2019, 34, 175-191.	3.0	50
24	Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virologica Sinica, 2019, 34, 135-161.	3.0	55
25	HPV18 Utilizes Two Alternative Branch Sites for E6*I Splicing to Produce E7 Protein. Virologica Sinica, 2019, 34, 211-221.	3.0	17
26	Oncogenic splicing factor SRSF3 regulates ILF3 alternative splicing to promote cancer cell proliferation and transformation. Rna, 2019, 25, 630-644.	3.5	47
27	A Genome-Wide Epstein-Barr Virus Polyadenylation Map and Its Antisense RNA to EBNA. Journal of Virology, 2019, 93, .	3.4	12
28	Detection of Viral RNA Splicing in Diagnostic Virology. , 2018, , 345-402.		1
29	The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function. PLoS Pathogens, 2018, 14, e1007232.	4.7	15
30	Human Papillomavirus (HPV)., 2018,, 1028-1041.		0
31	Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter. MBio, 2017, 8, .	4.1	12
32	Mouse papillomavirus infections spread to cutaneous sites with progression to malignancy. Journal of General Virology, 2017, 98, 2520-2529.	2.9	22
33	KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation. PLoS Pathogens, 2017, 13, e1006677.	4.7	59
34	The full transcription map of mouse papillomavirus type 1 (MmuPV1) in mouse wart tissues. PLoS Pathogens, 2017, 13, e1006715.	4.7	47
35	CLIPâ€seq to Identify KSHV ORF57â€Binding RNA in Host B Cells. Current Protocols in Microbiology, 2016, 41, 1E.11.1-1E.11.18.	6.5	3
36	PAâ€seq for Global Identification of RNA Polyadenylation Sites of Kaposi's Sarcoma–Associated Herpesvirus Transcripts. Current Protocols in Microbiology, 2016, 41, 14E.7.1-14E.7.18.	6.5	2

#	Article	IF	Citations
37	HPV18 DNA replication inactivates the early promoter P55 activity and prevents viral E6 expression. Virologica Sinica, 2016, 31, 437-440.	3.0	4
38	Cell Type- and Tissue Context-dependent Nuclear Distribution of Human Ago2. Journal of Biological Chemistry, 2016, 291, 2302-2309.	3.4	33
39	Serine/Arginine-Rich Splicing Factor 3 and Heterogeneous Nuclear Ribonucleoprotein A1 Regulate Alternative RNA Splicing and Gene Expression of Human Papillomavirus 18 through Two Functionally Distinguishable <i>cis</i> Elements. Journal of Virology, 2016, 90, 9138-9152.	3.4	40
40	A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells. Nucleic Acids Research, 2016, 44, 1854-1870.	14.5	112
41	Alternative RNA splicing of KSHV ORF57 produces two different RNA isoforms. Virology, 2016, 488, 81-87.	2.4	6
42	Construction of a Transcription Map for Papillomaviruses using RACE, RNase Protection, and Primer Extension Assays. Current Protocols in Microbiology, 2016, 40, 14B.6.1-14B.6.29.	6.5	4
43	Vemurafenib-resistant BRAF selects alternative branch points different from its wild-type BRAF in intron 8 for RNA splicing. Cell and Bioscience, 2015, 5, 70.	4.8	4
44	Adapted Resistance to the Knockdown Effect of shRNA-Derived Srsf3 siRNAs in Mouse Littermates. International Journal of Biological Sciences, 2015, 11, 1248-1256.	6.4	0
45	E6^E7, a Novel Splice Isoform Protein of Human Papillomavirus 16, Stabilizes Viral E6 and E7 Oncoproteins via HSP90 and GRP78. MBio, 2015, 6, e02068-14.	4.1	66
46	Stability of Structured Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein Is Regulated by Protein Phosphorylation and Homodimerization. Journal of Virology, 2015, 89, 3256-3274.	3.4	30
47	KSHV ORF57, a Protein of Many Faces. Viruses, 2015, 7, 604-633.	3.3	39
48	Multiple Regions of Kaposi's Sarcoma-Associated Herpesvirus ORF59 RNA are Required for Its Expression Mediated by Viral ORF57 and Cellular RBM15. Viruses, 2015, 7, 496-510.	3.3	17
49	Human Papillomaviruses. , 2014, , 87-112.		1
50	Both Decreased and Increased SRPK1 Levels Promote Cancer by Interfering with PHLPP-Mediated Dephosphorylation of Akt. Molecular Cell, 2014, 54, 378-391.	9.7	105
51	Genome sequencing accuracy by RCA-seq versus long PCR template cloning and sequencing in identification of human papillomavirus type 58. Cell and Bioscience, 2014, 4, 5.	4.8	5
52	microRNAs are biomarkers of oncogenic human papillomavirus infections. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4262-4267.	7.1	168
53	Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma–associated herpesvirus ORF57 protein is required for RNA splicing. Rna, 2014, 20, 1747-1758.	3.5	37
54	Oncogenes and RNA splicing of human tumor viruses. Emerging Microbes and Infections, 2014, 3, 1-16.	6.5	49

#	Article	IF	CITATIONS
55	Downregulation of splicing factor SRSF3 induces p53 \hat{i}^2 , an alternatively spliced isoform of p53 that promotes cellular senescence. Oncogene, 2013, 32, 2792-2798.	5.9	127
56	Detection of Viral RNA Splicing in Diagnostic Virology. , 2013, , 693-748.		4
57	A Viral Genome Landscape of RNA Polyadenylation from KSHV Latent to Lytic Infection. PLoS Pathogens, 2013, 9, e1003749.	4.7	49
58	Human Papillomavirus (HPV)., 2013,, 1-15.		0
59	Interplay between Polyadenylate-Binding Protein 1 and Kaposi's Sarcoma-Associated Herpesvirus ORF57 in Accumulation of Polyadenylated Nuclear RNA, a Viral Long Noncoding RNA. Journal of Virology, 2013, 87, 243-256.	3.4	49
60	Human Papillomavirus Type 58 Genome Variations and RNA Expression in Cervical Lesions. Journal of Virology, 2013, 87, 9313-9322.	3.4	22
61	Kaposi's Sarcoma-Associated Herpesvirus ORF57 Is Not a Bona Fide Export Factor. Journal of Virology, 2012, 86, 13089-13094.	3.4	14
62	Genome Sequence of Erythromelalgia-Related Poxvirus Identifies it as an Ectromelia Virus Strain. PLoS ONE, 2012, 7, e34604.	2.5	14
63	Intron Definition and a Branch Site Adenosine at nt 385 Control RNA Splicing of HPV16 E6*I and E7 Expression. PLoS ONE, 2012, 7, e46412.	2.5	47
64	Regulation of cellular miRNA expression by human papillomaviruses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 668-677.	1.9	175
65	Construction of a Full Transcription Map of Human Papillomavirus Type 18 during Productive Viral Infection. Journal of Virology, 2011, 85, 8080-8092.	3.4	87
66	Stability of a Long Noncoding Viral RNA Depends on a 9-Nt Core Element at the RNA 5' End to Interact with Viral ORF57 and Cellular PABPC1. International Journal of Biological Sciences, 2011, 7, 1145-1160.	6.4	64
67	Kaposi's sarcomaâ€associated herpesviral ILâ€6 and human ILâ€6 open reading frames contain miRNA binding sites and are subject to cellular miRNA regulation. Journal of Pathology, 2011, 225, 378-389.	4.5	59
68	Upregulation of p18Ink4c expression by oncogenic HPV E6 <i>via</i> p53â€miRâ€34a pathway. International Journal of Cancer, 2011, 129, 1362-1372.	5.1	71
69	Kaposi's Sarcoma-Associated Herpesvirus ORF57 Promotes Escape of Viral and Human Interleukin-6 from MicroRNA-Mediated Suppression. Journal of Virology, 2011, 85, 2620-2630.	3.4	67
70	Kaposi's Sarcoma-Associated Herpesvirus ORF57 Interacts with Cellular RNA Export Cofactors RBM15 and OTT3 To Promote Expression of Viral ORF59. Journal of Virology, 2011, 85, 1528-1540.	3.4	39
71	Requirement of UAP56, URH49, RBM15, and OTT3 in the expression of Kaposi sarcoma-associated herpesvirus ORF57. Virology, 2010, 407, 206-212.	2.4	10
72	<i>XPC</i> branch-point sequence mutations disrupt U2 snRNP binding, resulting in abnormal pre-mRNA splicing in xeroderma pigmentosum patients. Human Mutation, 2010, 31, 167-175.	2.5	17

#	Article	IF	CITATIONS
73	Viral Oncogenes, Noncoding RNAs, and RNA Splicing in Human Tumor Viruses. International Journal of Biological Sciences, 2010, 6, 730-755.	6.4	81
74	SRp20 is a proto-oncogene critical for cell proliferation and tumor induction and maintenance. International Journal of Biological Sciences, 2010, 6, 806-826.	6.4	173
75	Caspase-7 Cleavage of Kaposi Sarcoma-associated Herpesvirus ORF57 Confers a Cellular Function against Viral Lytic Gene Expression. Journal of Biological Chemistry, 2010, 285, 11297-11307.	3.4	29
76	Upregulation of p18Ink4c expression by HPV E6 via p53-miR-34a pathway. Infectious Agents and Cancer, 2010, 5 , .	2.6	0
77	Kaposi's sarcoma-associated herpesvirus ORF57 promotes escape of viral and human IL6 RNAs from microRNA-mediated suppression. Infectious Agents and Cancer, 2010, 5, .	2.6	0
78	Kaposi's sarcoma-associated herpesvirus ORF57 in viral RNA processing. Frontiers in Bioscience - Landmark, 2009, Volume, 1516.	3.0	36
79	Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. Rna, 2009, 15, 637-647.	3.5	203
80	Control of the Papillomavirus Early-to-Late Switch by Differentially Expressed SRp20. Journal of Virology, 2009, 83, 167-180.	3.4	82
81	Human papillomavirus type 16 E2 and E6 are RNA-binding proteins and inhibit in vitro splicing of pre-mRNAs with suboptimal splice sites. Virology, 2009, 386, 32-43.	2.4	46
82	Regulation of bovine papillomavirus type 1 gene expression by RNA processing. Frontiers in Bioscience - Landmark, 2009, Volume, 1270.	3.0	27
83	A novel ING2 isoform, ING2b, synergizes with ING2a to prevent cell cycle arrest and apoptosis. FEBS Letters, 2008, 582, 3868-3874.	2.8	19
84	Impaired DNA Damage Response, Genome Instability, and Tumorigenesis in SIRT1 Mutant Mice. Cancer Cell, 2008, 14, 312-323.	16.8	715
85	Kaposi's Sarcoma-Associated Herpesvirus ORF57 Functions as a Viral Splicing Factor and Promotes Expression of Intron-Containing Viral Lytic Genes in Spliceosome-Mediated RNA Splicing. Journal of Virology, 2008, 82, 2792-2801.	3.4	70
86	Aberrant Expression of Oncogenic and Tumor-Suppressive MicroRNAs in Cervical Cancer Is Required for Cancer Cell Growth. PLoS ONE, 2008, 3, e2557.	2.5	610
87	Targeted Disruption of Kaposi's Sarcoma-Associated Herpesvirus ORF57 in the Viral Genome Is Detrimental for the Expression of ORF59, $K8\hat{l}_{\pm}$, and $K8.1$ and the Production of Infectious Virus. Journal of Virology, 2007, 81, 1062-1071.	3.4	76
88	Papillomavirus genome structure, expression, and post-transcriptional regulation. Frontiers in Bioscience - Landmark, 2006, 11, 2286.	3.0	387
89	Short-term induction and long-term suppression of HPV16 oncogene silencing by RNA interference in cervical cancer cells. Oncogene, 2006, 25, 2094-2104.	5.9	51
90	Gene Structure and Expression of Kaposi's Sarcoma-Associated Herpesvirus ORF56, ORF57, ORF58, and ORF59. Journal of Virology, 2006, 80, 11968-11981.	3.4	57

#	Article	IF	CITATIONS
91	Structural and Functional Analyses of Kaposi Sarcoma-associated Herpesvirus ORF57 Nuclear Localization Signals in Living Cells. Journal of Biological Chemistry, 2006, 281, 28365-28378.	3.4	67
92	Genetic Organization and Hypoxic Activation of the Kaposi's Sarcoma-Associated Herpesvirus ORF34-37 Gene Cluster. Journal of Virology, 2006, 80, 7037-7051.	3 . 4	59
93	The E7 Oncoprotein Is Translated from Spliced E6*I Transcripts in High-Risk Human Papillomavirus Type 16- or Type 18-Positive Cervical Cancer Cell Lines via Translation Reinitiation. Journal of Virology, 2006, 80, 4249-4263.	3.4	187
94	Novel Splice Variants of ING4 and Their Possible Roles in the Regulation of Cell Growth and Motility. Journal of Biological Chemistry, 2006, 281, 34677-34686.	3 . 4	88
95	Development of Resistance to RNAi in Mammalian Cells. Annals of the New York Academy of Sciences, 2005, 1058, 105-118.	3 . 8	38
96	Kaposi's Sarcoma-Associated Herpesvirus $K8\hat{1}^2$ Is Derived from a Spliced Intermediate of K8 Pre-mRNA and Antagonizes $K8\hat{1}_{\pm}$ (K-bZIP) To Induce p21 and p53 and Blocks $K8\hat{1}_{\pm}$ -CDK2 Interaction. Journal of Virology, 2005, 79, 14207-14221.	3 . 4	24
97	Colorectal Papillomavirus Infection in Patients with Colorectal Cancer. Clinical Cancer Research, 2005, 11, 2862-2867.	7.0	120
98	Could Human Papillomaviruses Be Spread through Blood?. Journal of Clinical Microbiology, 2005, 43, 5428-5434.	3.9	113
99	Requirement of a 12-Base-Pair TATT-Containing Sequence and Viral Lytic DNA Replication in Activation of the Kaposi's Sarcoma-Associated Herpesvirus K8.1 Late Promoter. Journal of Virology, 2004, 78, 2609-2614.	3.4	47
100	Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. Journal of Biomedical Science, 2004, 11 , $278-294$.	7.0	144
101	Splicing of a Cap-proximal Human Papillomavirus 16 E6E7 Intron Promotes E7 Expression, but can be Restrained by Distance of the Intron from its RNA 5′ Cap. Journal of Molecular Biology, 2004, 337, 1091-1108.	4.2	60
102	Regulation of Alternative RNA Splicing by Exon Definition and Exon Sequences in Viral and Mammalian Gene Expression. Journal of Biomedical Science, 2004, 11, 278-294.	7.0	84
103	Split genes and their expression in Kaposi's sarcoma-associated herpesvirus. Reviews in Medical Virology, 2003, 13, 173-184.	8.3	46
104	SignalsThat Dictate Nuclear Localization of Human Papillomavirus Type 16Oncoprotein E6 in LivingCells. Journal of Virology, 2003, 77, 13232-13247.	3. 4	52
105	Exonic Splicing Enhancer-Dependent Selection of the Bovine Papillomavirus Type 1 Nucleotide 3225 3′ Splice Site Can Be Rescued in a Cell Lacking Splicing Factor ASF/SF2 through Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway. Journal of Virology, 2003, 77, 2105-2115.	3.4	45
106	Kaposi's Sarcoma-associated Herpesvirus K8 Exon 3 Contains Three 5′-Splice Sites and Harbors a K8.1 Transcription Start Site. Journal of Biological Chemistry, 2002, 277, 14547-14556.	3.4	41
107	Parameters that affect in vitro splicing of bovine papillomavirus type 1 late pre-mRNAs. Journal of Virological Methods, 2000, 85, 203-214.	2.1	13
108	Optimization of a Weak 3′ Splice Site Counteracts the Function of a Bovine Papillomavirus Type 1 Exonic Splicing Suppressor In Vitro and In Vivo. Journal of Virology, 2000, 74, 5902-5910.	3.4	21

#	Article	IF	CITATIONS
109	Utilization of the Bovine Papillomavirus Type 1 Late-Stage-Specific Nucleotide $3605\ 3\hat{a} \in 2$ Splice Site Is Modulated by a Novel Exonic Bipartite Regulator but Not by an Intronic Purine-Rich Element. Journal of Virology, 2000, 74, 10612-10622.	3.4	34
110	Delta-9-tetrahydrocannabinol: An inhibitor of STAT1 \hat{l}_{\pm} protein tyrosine phosphorylation. Biochemical Pharmacology, 1996, 51, 967-973.	4.4	3
111	Delta-9-tetrahydrocannabinol suppresses tumor necrosis factor α maturation and secretion but not its transcription in mouse macrophages. International Journal of Immunopharmacology, 1996, 18, 53-68.	1.1	23
112	Enterovirus 71 isolated from China is serologically similar to the prototype E71 BrCr strain but differs in the 5′-noncoding region. Journal of Medical Virology, 1995, 47, 161-167.	5.0	47
113	Comparison of enterovirus 71 (E71) isolated from a patient with hand-foot-and-mouth disease in China to prototype E71 BrCr strain by polymerase chain reaction using a unique primer pair. Clinical and Diagnostic Virology, 1993, 1, 137-139.	1.7	1
114	Inhibition by delta-9-tetrahydrocannabinol of tumor necrosis factor alpha production by mouse and human macrophages. International Journal of Immunopharmacology, 1992, 14, 1445-1452.	1.1	59
115	Thymic hypoplasia, splenomegaly and immune depression in guinea pigs with neonatal cytomegalovirus infection. Developmental and Comparative Immunology, 1987, 11, 407-418.	2.3	4
116	Effect of CP-20,961 on genital herpes in guinea pigs. Antiviral Research, 1983, 3, 275-283.	4.1	9