Stephanie N Langel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2618427/publications.pdf

Version: 2024-02-01

471509 477307 29 945 17 29 citations h-index g-index papers 32 32 32 1281 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Escherichia coli Nissle 1917 Enhances Efficacy of Oral Attenuated Human Rotavirus Vaccine in a Gnotobiotic Piglet Model. Vaccines, 2022, 10, 83.	4.4	3
2	E-cigarette and food flavoring diacetyl alters airway cell morphology, inflammatory and antiviral response, and susceptibility to SARS-CoV-2. Cell Death Discovery, 2022, 8, 64.	4.7	9
3	Adenovirus type 5 SARS-CoV-2 vaccines delivered orally or intranasally reduced disease severity and transmission in a hamster model. Science Translational Medicine, 2022, 14, eabn6868.	12.4	62
4	Maternal immune protection against infectious diseases. Cell Host and Microbe, 2022, 30, 660-674.	11.0	18
5	Escherichia coli Nissle 1917 administered as a dextranomar microsphere biofilm enhances immune responses against human rotavirus in a neonatal malnourished pig model colonized with human infant fecal microbiota. PLoS ONE, 2021, 16, e0246193.	2.5	17
6	Escherichia coli Nissle 1917 Enhances Innate and Adaptive Immune Responses in a Ciprofloxacin-Treated Defined-Microbiota Piglet Model of Human Rotavirus Infection. MSphere, 2021, 6, .	2.9	14
7	Oral Hsp90 inhibitor SNX-5422 attenuates SARS-CoV-2 replication and dampens inflammation in airway cells. IScience, 2021, 24, 103412.	4.1	20
8	Lessons From COVID-19 in Children: Key Hypotheses to Guide Preventative and Therapeutic Strategies. Clinical Infectious Diseases, 2020, 71, 2006-2013.	5.8	33
9	Maternal gatekeepers: How maternal antibody Fc characteristics influence passive transfer and infant protection. PLoS Pathogens, 2020, 16, e1008303.	4.7	18
10	Malnutrition Decreases Antibody Secreting Cell Numbers Induced by an Oral Attenuated Human Rotavirus Vaccine in a Human Infant Fecal Microbiota Transplanted Gnotobiotic Pig Model. Frontiers in Immunology, 2020, 11, 196.	4.8	15
11	Host Factors Affecting Generation of Immunity Against Porcine Epidemic Diarrhea Virus in Pregnant and Lactating Swine and Passive Protection of Neonates. Pathogens, 2020, 9, 130.	2.8	28
12	Maternal antibody interference contributes to reduced rotavirus vaccine efficacy in developing countries. PLoS Pathogens, 2020, 16, e1009010.	4.7	25
13	Infectivity of GII.4 human norovirus does not differ between T-B-NK+ severe combined immunodeficiency (SCID) and non-SCID gnotobiotic pigs, implicating the role of NK cells in mediation of human norovirus infection. Virus Research, 2019, 267, 21-25.	2.2	6
14	Stage of Gestation at Porcine Epidemic Diarrhea Virus Infection of Pregnant Swine Impacts Maternal Immunity and Lactogenic Immune Protection of Neonatal Suckling Piglets. Frontiers in Immunology, 2019, 10, 727.	4.8	41
15	Oral vitamin A supplementation of porcine epidemic diarrhea virus infected gilts enhances IgA and lactogenic immune protection of nursing piglets. Veterinary Research, 2019, 50, 101.	3.0	21
16	Pathogenicity and immunogenicity of attenuated porcine epidemic diarrhea virus PC22A strain in conventional weaned pigs. BMC Veterinary Research, 2019, 15, 26.	1.9	30
17	Effect of antibiotic, probiotic, and human rotavirus infection on colonisation dynamics of defined commensal microbiota in a gnotobiotic pig model. Beneficial Microbes, 2018, 9, 71-86.	2.4	18
18	Protein deficiency reduces efficacy of oral attenuated human rotavirus vaccine in a human infant fecal microbiota transplanted gnotobiotic pig model. Vaccine, 2018, 36, 6270-6281.	3.8	32

#	Article	IF	CITATION
19	Impact of nutrition and rotavirus infection on the infant gut microbiota in a humanized pig model. BMC Gastroenterology, 2018, 18, 93.	2.0	53
20	Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs. MSphere, 2017, 2, .	2.9	37
21	Protein Malnutrition Alters Tryptophan and Angiotensin-Converting Enzyme 2 Homeostasis and Adaptive Immune Responses in Human Rotavirus-Infected Gnotobiotic Pigs with Human Infant Fecal Microbiota Transplant. Vaccine Journal, 2017, 24, .	3.1	30
22	Unraveling the Differences between Gram-Positive and Gram-Negative Probiotics in Modulating Protective Immunity to Enteric Infections. Frontiers in Immunology, 2017, 8, 334.	4.8	49
23	Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus Research, 2016, 226, 93-107.	2.2	137
24	<i>Escherichia coli</i> Nissle 1917 protects gnotobiotic pigs against human rotavirus by modulating pDC and NK ell responses. European Journal of Immunology, 2016, 46, 2426-2437.	2.9	39
25	Effects of Escherichia coli Nissle 1917 and Ciprofloxacin on small intestinal epithelial cell mRNA expression in the neonatal piglet model of human rotavirus infection. Gut Pathogens, 2016, 8, 66.	3.4	16
26	Differential Effects of <i>Escherichia coli</i> Nissle and <i>Lactobacillus rhamnosus</i> Strain GG on Human Rotavirus Binding, Infection, and B Cell Immunity. Journal of Immunology, 2016, 196, 1780-1789.	0.8	86
27	Effect of feeding whole compared with cell-free colostrum on calf immune status: Vaccination response. Journal of Dairy Science, 2016, 99, 3979-3994.	3.4	17
28	Comparative <i>In Vitro</i> and <i>In Vivo</i> Studies of Porcine Rotavirus G9P[13] and Human Rotavirus Wa G1P[8]. Journal of Virology, 2016, 90, 142-151.	3.4	19
29	Effect of feeding whole compared with cell-free colostrum on calf immune status: The neonatal period. Journal of Dairy Science, 2015, 98, 3729-3740.	3.4	41