Lalit Ponnala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2618314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomics, phylogenetics, and coexpression analyses indicate novel interactions in the plastid CLP chaperone-protease system. Journal of Biological Chemistry, 2022, 298, 101609.	3.4	7
2	Alternative σ Factors Regulate Overlapping as Well as Distinct Stress Response and Metabolic Functions in Listeria monocytogenes under Stationary Phase Stress Condition. Pathogens, 2021, 10, 411.	2.8	2
3	Tissue-type specific accumulation of the plastoglobular proteome, transcriptional networks, and plastoglobular functions. Journal of Experimental Botany, 2021, 72, 4663-4679.	4.8	13
4	Autocatalytic Processing and Substrate Specificity of Arabidopsis Chloroplast Glutamyl Peptidase. Plant Physiology, 2020, 184, 110-129.	4.8	7
5	Targeted Profiling of <i>Arabidopsis thaliana</i> Subproteomes Illuminates Co- and Posttranslationally N-Terminal Myristoylated Proteins. Plant Cell, 2018, 30, 543-562.	6.6	54
6	SPOP Mutation Drives Prostate Tumorigenesis InÂVivo through Coordinate Regulation of PI3K/mTOR and AR Signaling. Cancer Cell, 2017, 31, 436-451.	16.8	152
7	MET1 Is a Thylakoid-Associated TPR Protein Involved in Photosystem II Supercomplex Formation and Repair in <i>Arabidopsis</i> . Plant Cell, 2015, 27, 262-285.	6.6	40
8	Structures, Functions, and Interactions of ClpT1 and ClpT2 in the Clp Protease System of Arabidopsis Chloroplasts. Plant Cell, 2015, 27, 1477-1496.	6.6	40
9	Discovery of a Unique Clp Component, ClpF, in Chloroplasts: A Proposed Binary ClpF-ClpS1 Adaptor Complex Functions in Substrate Recognition and Delivery. Plant Cell, 2015, 27, tpc.15.00574.	6.6	63
10	Correlation of <scp>mRNA</scp> and protein abundance in the developing maize leaf. Plant Journal, 2014, 78, 424-440.	5.7	104
11	ClpS1 Is a Conserved Substrate Selector for the Chloroplast Clp Protease System in Arabidopsis. Plant Cell, 2013, 25, 2276-2301.	6.6	98
12	Loss of Plastoglobule Kinases ABC1K1 and ABC1K3 Causes Conditional Degreening, Modified Prenyl-Lipids, and Recruitment of the Jasmonic Acid Pathway. Plant Cell, 2013, 25, 1818-1839.	6.6	92
13	Modified Clp Protease Complex in the ClpP3 Null Mutant and Consequences for Chloroplast Development and Function in Arabidopsis Â. Plant Physiology, 2013, 162, 157-179.	4.8	55
14	Nucleoid-Enriched Proteomes in Developing Plastids and Chloroplasts from Maize Leaves: A New Conceptual Framework for Nucleoid Functions Â. Plant Physiology, 2012, 158, 156-189.	4.8	216
15	A Plausible Role for the Presence of Internal Shine-Dalgarno Sites. Bioinformatics and Biology Insights, 2010, 4, BBI.S5236.	2.0	6
16	Structural and Metabolic Transitions of C4 Leaf Development and Differentiation Defined by Microscopy and Quantitative Proteomics in Maize. Plant Cell, 2010, 22, 3509-3542.	6.6	206
17	Megadalton Complexes in the Chloroplast Stroma of Arabidopsis thaliana Characterized by Size Exclusion Chromatography, Mass Spectrometry, and Hierarchical Clustering. Molecular and Cellular Proteomics, 2010, 9, 1594-1615.	3.8	169
18	Detecting slow-translating regions in E.coli. International Journal of Bioinformatics Research and Applications, 2010, 6, 522-30.	0.2	1

1	- D	~	
LAL	ΠP	ΟΝΝ	ALA

#	Article	IF	CITATIONS
19	On finding poorly translated codons based on their usage frequency. Bioinformation, 2009, 4, 63-65.	0.5	2