Tie-Jun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2617737/publications.pdf

Version: 2024-02-01

		147801	123424
156	4,300	31	61
papers	citations	h-index	g-index
1 - 7	1 - 7	157	1250
157	157	157	1258
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gain Enhanced Second Harmonic Generation in Coupled Resonators System. International Journal of Theoretical Physics, 2022, 61, 1.	1.2	O
2	Electromagnetically Induced Transparency and Absorption in Directly Coupled Whispering-Gallery Mode Microcavities. IEEE Photonics Journal, 2022, 14, 1-8.	2.0	2
3	Control power of high-dimensional controlled dense coding. Physical Review A, 2022, 105, .	2.5	6
4	Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Frontiers of Physics, 2022, 17, .	5.0	27
5	Ultrasound Sensing Using Packaged Microsphere Cavity in the Underwater Environment. Sensors, 2022, 22, 4190.	3.8	6
6	Real-time sensing on the angular coordinates of nanoparticles using whispering-gallery mode optical microcavities. Europhysics Letters, 2021, 133, 14002.	2.0	2
7	Optical Parametric Oscillation with Ultra-Low Power Threshold in a Dimer of Active-Passive Cavities. Crystals, 2021, 11, 566.	2.2	4
8	Efficient multiâ€qubit quantum data compression. Quantum Engineering, 2021, 3, e67.	2.5	9
9	Control power of a high-dimensional controlled nonlocal quantum computation. Physical Review A, 2021, 103, .	2.5	7
10	Hybrid coupling optomechanical assisted nonreciprocal photon blockade. Optics Express, 2021, 29, 25161.	3.4	5
11	Hybrid Dissipative and Dispersive Optomechanically Induced Transparency. IEEE Transactions on Quantum Engineering, 2021, 2, $1-8$.	4.9	0
12	Optimal photon-magnon mode matching in whispering-gallery mode cavities. Optics Express, 2021, 29, 40061.	3.4	3
13	Magnons scattering induced photonic chaos in the optomagnonic resonators. Nanophotonics, 2020, 9, 1953-1961.	6.0	17
14	The analysis of high-capacity quantum secure direct communication using polarization and orbital angular momentum of photons. Modern Physics Letters B, 2020, 34, 2050017.	1.9	13
15	Optical magnetic sensing using whispering-gallery mode optomagnonical cavity. IEEE Sensors Journal, 2020, , 1-1.	4.7	2
16	Nanoscatterer-mediated frequency combs in cavity optomagnonics. Physical Review A, 2020, 102, .	2.5	15
17	High-dimensional measurement-device-independent quantum secure direct communication. Quantum Information Processing, 2020, 19, 1.	2.2	15
18	The Particle Induced Mode Splitting and Exceptional Points in Whispering-Gallery Mode Microcavity. IEEE Photonics Journal, 2020, 12, 1-14.	2.0	4

#	Article	IF	Citations
19	Photothermally Induced Transparency in Modeâ€Cascaded Microcavity. Advanced Photonics Research, 2020, 1, 2000016.	3.6	5
20	Packaged Microbubble Resonator for Versatile Optical Sensing. Journal of Lightwave Technology, 2020, 38, 4555-4559.	4.6	17
21	The Study of Security During Quantum Dense Coding in High-Dimensions. International Journal of Theoretical Physics, 2020, 59, 1957-1965.	1.2	5
22	Two-copy quantum teleportation based on GHZ measurement. Quantum Information Processing, 2020, 19, 1.	2.2	5
23	Magnon-induced chaos in an optical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric resonator. Physical Review E, 2020, 101, 012205.	2.1	19
24	Control power of high-dimensional controlled teleportation. Physical Review A, 2020, 101, .	2.5	10
25	Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system. Optics Express, 2020, 28, 22334.	3.4	16
26	Asymmetrical Bell state analysis for photon-atoms hybrid system. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	4
27	Entanglement purification and concentration based on hybrid spin entangled states of separate nitrogen-vacancy centers. Europhysics Letters, 2019, 126, 40006.	2.0	7
28	Parity-Time-Anyonic Coupled Resonators System With Tunable Exceptional Points. IEEE Access, 2019, 7, 107874-107878.	4.2	5
29	Photon excitation and photon-blockade effects in optomagnonic microcavities. Physical Review A, 2019, 100, .	2.5	34
30	Efficient Teleportation for High-Dimensional Quantum Computing. IEEE Access, 2019, 7, 115331-115338.	4.2	9
31	Generation of Entangled and Hyperentangled Bell States on Photon Systems Assisted by Diamond Nitrogen-Vacancy Centers Coupled with Whispering-Gallery-Mode Microresonators. International Journal of Theoretical Physics, 2019, 58, 2200-2212.	1.2	2
32	Optomechanically Induced Mode Transition and Spectrum Enhancement in a Microresonator System. Annalen Der Physik, 2019, 531, 1800419.	2.4	4
33	Faithful Transmission of Single-Photon Qubits Using Error-Rejection Coding. IEEE Photonics Journal, 2019, 11, 1-7.	2.0	4
34	Electromagnetic Engineered Mechanical Trapping Potential and the Conversion in Optomechanics. IEEE Journal of Quantum Electronics, 2019, 55, 1-7.	1.9	0
35	High-Dimensional Bell State Analysis for Photon-Atoms Hybrid System. International Journal of Theoretical Physics, 2019, 58, 451-462.	1.2	0
36	Berry phase in an anti-PT symmetric metal-semiconductor complex system. Optics Express, 2019, 27, 22237.	3.4	8

#	Article	IF	Citations
37	Generation of Oneâ€Way Gaussian Steering by Gaussian Channel and Converting Oneâ€Way Gaussian Steering by Beamsplitters. Annalen Der Physik, 2018, 530, 1700328.	2.4	1
38	The Nonlinear Effects of a Kerr-Resonator Optomechanical System. International Journal of Theoretical Physics, 2018, 57, 957-964.	1.2	0
39	Gain lifetime characterization through time-resolved stimulated emission in a whispering-gallery mode microresonator. Nanophotonics, 2018, 8, 127-134.	6.0	17
40	Chiral microresonator assisted by Rydberg-atom ensembles. Physical Review A, 2018, 98, .	2.5	10
41	Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities. Photonics Research, 2018, 6, 99.	7.0	34
42	Optothermal control of gains in erbium-doped whispering-gallery microresonators. Optics Letters, 2018, 43, 326.	3.3	18
43	The analysis of high-order sideband signals in optomechanical system. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	17
44	Efficient hyperentanglement purification using a \hat{i}_{s} system coupled with a whispering-gallery-mode microresonator. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 423.	2.1	1
45	Plasmonic band-pass filter device using coupled asymmetric cross-shaped cavity. Modern Physics Letters B, 2017, 31, 1750001.	1.9	1
46	Effective Mass Sensing Using Optomechanically Induced Transparency in Microresonator System. IEEE Photonics Journal, 2017, 9, 1-11.	2.0	12
47	Efficient entanglement concentration of arbitrary unknown less-entangled three-atom W states via photonic Faraday rotation in cavity QED. Quantum Information Processing, 2017, $16, 1$.	2.2	11
48	Efficient purification and concentration for $\$$ varLambda $\$\$$ $\hat{\imath}$ -type three-level entangled quantum dots using non-reciprocal microresonators. Quantum Information Processing, 2017, 16, 1.	2,2	7
49	Ultracompact On-Chip Multiplexed Sensor Array Based on Dense Integration of Flexible 1-D Photonic Crystal Nanobeam Cavity With Large Free Spectral Range and High Q-Factor. IEEE Photonics Journal, 2017, 9, 1-12.	2.0	6
50	Dynamics of coherence under Markovian and non-Markovian environments. Modern Physics Letters B, 2017, 31, 1750329.	1.9	2
51	High-dimensional Controlled-phase Gate Between a 2 N -dimensional Photon and N Three-level Artificial Atoms. International Journal of Theoretical Physics, 2017, 56, 3068-3083.	1.2	1
52	Quantum Key Distribution with High Order Fibonacci-like Orbital Angular Momentum States. International Journal of Theoretical Physics, 2017, 56, 2622-2634.	1.2	10
53	Cavity-mediated coupling of phonons and magnons. Physical Review A, 2017, 96, .	2.5	53
54	Phase-coupled optical diode based on PT symmetric system. Optics Communications, 2017, 383, 238-243.	2.1	1

#	Article	IF	CITATIONS
55	A novel proposal for ultracompact WDM demultiplexer design based on flexible 1D photonic crystal nanobeam cavities. , $2017, , .$		O
56	Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Optics Express, 2017, 25, 16931.	3.4	62
57	Optomechanically engineered phononic mode resonance. Optics Express, 2017, 25, 26638.	3.4	10
58	Gap induced mode evolution under the asymmetric structure in a plasmonic resonator system. Photonics Research, 2017, 5, 113.	7.0	6
59	Hyperentanglement purification using imperfect spatial entanglement. Optics Express, 2017, 25, 2969.	3.4	22
60	Efficient Entanglement Distillation of Solid Qubits Using Non-Reciprocal Microresonators., 2017,,.		0
61	Silicon On-chip Ultracompact Integrated Sensor Array Based on High-Q Photonic Crystal Nanobeam Cavities with Very Large Free Spectral Range. , 2017, , .		1
62	Tunable high-order sideband spectra generation using a photonic molecule optomechanical system. Scientific Reports, 2016, 6, 22920.	3.3	41
63	Gaussian entanglement generation from coherence using beam-splitters. Scientific Reports, 2016, 6, 38002.	3.3	12
64	Optical High-Order Sideband Comb Generation in a Photonic Molecule Optomechanical System. IEEE Journal of Quantum Electronics, 2016, 52, 1-5.	1.9	17
65	Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord. Quantum Information Processing, 2016, 15, 2441-2453.	2.2	5
66	Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators. Optics Express, 2016, 24, 9550.	3.4	17
67	Construction of high-dimensional universal quantum logic gates using a \hat{i} system coupled with a whispering-gallery-mode microresonator. Optics Express, 2016, 24, 15429.	3.4	18
68	High-Dimensional Circular Quantum Secret Sharing Using Orbital Angular Momentum. International Journal of Theoretical Physics, 2016, 55, 4963-4971.	1.2	8
69	Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array. Optics Express, 2016, 24, 16267.	3.4	35
70	Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	5.1	48
71	High-capacity quantum secure direct communication using hyper-entanglement of photonic qubits. International Journal of Quantum Information, 2016, 14, 1650043.	1.1	10
72	Experimental distinction of Autler-Townes splitting from electromagnetically induced transparency using coupled mechanical oscillators system. Scientific Reports, 2016, 6, 19040.	3.3	14

#	Article	IF	Citations
73	Complete hyperentangled-Bell-state analysis for photonic qubits assisted by a three-level \hat{\hat}\text{-type system.} Scientific Reports, 2016, 6, 19497.	3.3	18
74	Tunable Plasmonic Wavelength Demultiplexing Device Using Coupled Resonator System. IEEE Photonics Journal, $2016, 8, 1-8$.	2.0	18
75	Nonlocal hyperconcentration on entangled photons using photonic module system. Annals of Physics, 2016, 369, 128-138.	2.8	41
76	Silicon On-chip 1D Photonic Crystal Nanobeam Bandgap Filter Integrated with Nanobeam Cavity for Accurate Refractive Index Sensing. IEEE Photonics Journal, 2016, , 1-1.	2.0	6
77	Efficient Quantum Secure Direct Communication Using the Orbital Angular Momentum of Single Photons. International Journal of Theoretical Physics, 2016, 55, 1811-1819.	1.2	4
78	High-efficient entanglement distillation from photon loss and decoherence. Optics Express, 2015, 23, 31550.	3.4	17
79	Cluster state entanglement generation and concentration on nitrogen-vacancy centers in decoherence-free subspace. Laser Physics Letters, 2015, 12, 036001.	1.4	15
80	Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems. Quantum Information Processing, 2015, 14, 1265-1277.	2,2	22
81	Protected quantum-state transfer in decoherence-free subspaces. Physical Review A, 2015, 91, .	2.5	33
82	High-Capacity Quantum Secure Direct Communication With Orbital Angular Momentum of Photons. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	38
83	One-step hyperentanglement purification and hyperdistillation with linear optics. Optics Express, 2015, 23, 9284.	3.4	60
84	Electronically controlled plasmonic switch using a nanomechanical oscillator and metallic nanoparticle hybrid system. Laser Physics Letters, 2015, 12, 105202.	1.4	1
85	Concentration on partially entangled W-class states on nitrogen-vacancy centers assisted by microresonator. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1524.	2.1	10
86	Concentration and distribution of entanglement based on valley qubits system in graphene. Science Bulletin, 2015, 60, 2016-2021.	9.0	41
87	Hyperentanglement purification with linear optics assisted by W-states. Quantum Information Processing, 2015, 14, 623-634.	2.2	7
88	Parallel Quantum Computing Teleportation for Spin Qubits in Quantum Dot and Microcavity Coupled System. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 91-97.	2.9	9
89	Implementation of a nonlocal <i>N</i> -qubit conditional phase gate using the nitrogen–vacancy center and microtoroidal resonator coupled systems. Chinese Physics B, 2014, 23, 040304.	1.4	1
90	Implementation of quantum repeaters based on nitrogen-vacancy centers via coupling to microtoroid resonators. Laser Physics, 2014, 24, 105204.	1.2	3

#	Article	IF	Citations
91	Concentration of entangled nitrogen-vacancy centers in decoherence free subspace. Optics Express, 2014, 22, 1551.	3.4	21
92	Linear-optical implementation of hyperdistillation from photon loss. Physical Review A, 2014, 89, .	2.5	45
93	Quantum Controlled-Not Gate Operation and Complete Bell-State Analysis Using Hybrid Quantum Circuits. International Journal of Theoretical Physics, 2014, 53, 235-248.	1.2	5
94	Hybrid entanglement concentration using quantum dot and microcavity coupled system. Quantum Information Processing, 2014, 13, 1025-1034.	2.2	20
95	A hybrid-system approach for W state and cluster state generation. Optics Communications, 2014, 310, 166-172.	2.1	10
96	Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Physical Review A, 2014, 90, .	2.5	35
97	Method for Generating W States Basedon Nitrogen-Vacancy Centers and Whispering-Gallery Mode Cavity. International Journal of Theoretical Physics, 2014, 53, 3774-3779.	1.2	4
98	Implementation of High Capacity Quantum Secret Sharing Using Orbital Angular Momentum of Photons. International Journal of Theoretical Physics, 2014, 53, 3927-3934.	1.2	4
99	Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities. Laser Physics Letters, 2014, 11, 025203.	1.4	31
100	Multiphoton quantum communication in quantum networks. Physical Review A, 2014, 89, .	2.5	19
101	Nonlocal entanglement concentration of separate nitrogen-vacancy centers coupling to microtoroidal resonators. Quantum Information and Computation, 2014, 14, 107-121.	0.3	5
102	Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Optics Express, 2013, 21, 4093.	3.4	77
103	On the developments and applications of optical microcavities: an overview. Science China Information Sciences, 2013, 56, 1-15.	4.3	3
104	Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2054-2058.	5.1	21
105	Polarization-Entanglement Purification for Ideal Sources Using Weak Cross-Kerr Nonlinearity. International Journal of Theoretical Physics, 2013, 52, 1265-1273.	1.2	6
106	Optimal atomic entanglement concentration using coherent-state input–output process in low-Q cavity quantum electrodynamics system. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2136.	2.1	6
107	Multipartite electronic entanglement purification using quantum-dot spin and microcavity system. Quantum Information Processing, 2013, 12, 525-536.	2.2	11
108	Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system. Optics Communications, 2013, 298-299, 260-266.	2.1	18

#	Article	IF	Citations
109	High-dimensional quantum state transfer through a quantum spin chain. Physical Review A, 2013, 87, .	2.5	52
110	Generation and analysis of hyperentangled multiqubit states for photons using quantum-dot spins in optical microcavities. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2689.	2.1	6
111	Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators. Optics Express, 2013, 21, 19252.	3.4	43
112	Quantum Secure Direct Communication. , 2013, , .		5
113	Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1069.	2.1	30
114	Scalable quantum computation via a coherent state input–output process in a low- <i>Q</i> cavity in the atom–cavity intermediate coupling region. Laser Physics, 2013, 23, 125201.	1.2	3
115	Multi-particle Entanglement Generation Using Quantum-Dot Spin and Optical Microcavity System. Chinese Physics Letters, 2012, 29, 070305.	3.3	3
116	Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 3349.	2.1	24
117	Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Physical Review A, 2012, 86, .	2.5	147
118	Entanglement concentration for an arbitrary hybrid less-entangled state and W state using quantum dots and a microcavity coupled system. Chinese Physics B, 2012, 21, 110305.	1.4	8
119	Nonlocal entanglement analysis using quantum dot and microcavity coupled system. Journal of Modern Optics, 2012, 59, 962-966.	1.3	4
120	Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Physical Review A, 2012, 85, .	2.5	181
121	Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Physical Review A, 2012, 86, .	2.5	81
122	Recent development in quantum communication. Science Bulletin, 2012, 57, 4694-4700.	1.7	31
123	Dicke state generation using cross-Kerr nonlinearity. Journal of Modern Optics, 2011, 58, 21-25.	1.3	4
124	High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement. Chinese Physics Letters, 2011, 28, 040305.	3.3	94
125	Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Physical Review A, 2011, 84, .	2.5	188
126	Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system. Optics Express, 2011, 19, 25685.	3.4	42

#	Article	IF	Citations
127	Decoherence-free subspaces of anyon states. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 4713-4718.	2.6	4
128	Free-space quantum-key distribution with polarization compensation. Journal of Russian Laser Research, 2011, 32, 579-583.	0.6	2
129	Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Optics Communications, 2011, 284, 3639-3642.	2.1	44
130	Optical implementation of quantum random walks using weak cross-Kerr media. Science Bulletin, 2011, 56, 2088-2091.	1.7	15
131	Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance. Chinese Physics Letters, 2011, 28, 080302.	3.3	9
132	Remote Three-Party Quantum State Sharing Based on Three-Atom Entangled States Assisted by Cavity QED and Flying Qubits. Communications in Theoretical Physics, 2011, 55, 795-803.	2.5	15
133	Quantum secure direct communication. Scientia Sinica: Physica, Mechanica Et Astronomica, 2011, 41, 332-342.	0.4	18
134	Polarization-entanglement purification and concentration using cross-Kerr nonlinearity. Quantum Information and Computation, 2011, 11, 988-1002.	0.3	53
135	Generalized quantum state sharing of the arbitrary two particles state. Science China: Physics, Mechanics and Astronomy, 2010, 53, 2064-2068.	5.1	5
136	QUANTUM DIRECT COMMUNICATION BASED ON QUANTUM SEARCH ALGORITHM. International Journal of Quantum Information, 2010, 08, 443-450.	1.1	36
137	Six-State Quantum Key Distribution Using Photons with Orbital Angular Momentum. Chinese Physics Letters, 2010, 27, 110303.	3.3	16
138	The ground-state entanglement in the spin- XX chain with a magnetization current. Chinese Physics B, 2010, 19, 110308.	1.4	0
139	Quantum Secure Direct Communication with Authentication Expansion Using Single Photons. Communications in Theoretical Physics, 2010, 54, 829-834.	2.5	20
140	Realization of quantum state privacy amplification in a nuclear magnetic resonance quantum system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 125502.	1.5	11
141	Faithful quantum secure direct communication protocol against collective noise. Chinese Physics B, 2010, 19, 110306.	1.4	24
142	DOUBLING THE CAPACITY OF QUANTUM KEY DISTRIBUTION BY USING BOTH POLARIZATION AND DIFFERENTIAL PHASE SHIFT. International Journal of Quantum Information, 2009, 07, 529-537.	1.1	12
143	Arbitrarily long distance quantum communication using inspection and power insertion. Science Bulletin, 2009, 54, 158-162.	1.7	41
144	Efficient entanglement purification for doubly entangled photon state. Science in China Series D: Earth Sciences, 2009, 52, 3464-3467.	0.9	19

#	Article	IF	CITATIONS
145	Quantum key distribution using polarization and frequency hyperentangled photons. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2072.	2.1	12
146	Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 4716-4722.	2.6	48
147	Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs. Physical Review A, 2008, 77, .	2.5	59
148	From Quantum Key Distribution to Quantum Secure Direct Communication., 2007,,.		1
149	Quantum secure direct communication and deterministic secure quantum communication. Frontiers of Physics in China, 2007, 2, 251-272.	1.0	247
150	Experimental realization of quantum cryptography communication in free space. Science in China Series G: Physics, Mechanics and Astronomy, 2005, 48, 237.	0.2	9
151	Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Optics Communications, 2005, 253, 15-20.	2.1	318
152	No-relationship Between Impossibility of Faster-Than-Light Quantum Communication and Distinction of Ensembles with the Same Density Matrix. Communications in Theoretical Physics, 2005, 44, 622-624.	2.5	5
153	Quantum secure direct communication with high-dimension quantum superdense coding. Physical Review A, 2005, 71, .	2.5	798
154	Implementation of a multiple round quantum dense coding using nuclear magnetic resonance. Science in China Series G: Physics, Mechanics and Astronomy, 2005, 48, 706.	0.2	8
155	Quantum entanglement between two antiferromagnets in the microcavities. Europhysics Letters, 0, , .	2.0	0
156	The transmission efficiency analysis for quantum secure direct communications over noisy channels. International Journal of Quantum Information, 0, , .	1.1	1