
Moriel Zelikowsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2617546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational, Behavioral, and Neural Circuit Dissection of Internal States Produced by Prolonged and Acute Psychosocial Stress. Biological Psychiatry, 2022, 91, S19.	1.3	Ο
2	The emergence and influence of internal states. Neuron, 2022, 110, 2545-2570.	8.1	64
3	Dynamic influences on the neural encoding of social valence. Nature Reviews Neuroscience, 2022, 23, 535-550.	10.2	15
4	Limbic Neuropeptidergic Modulators of Emotion and Their Therapeutic Potential for Anxiety and Post-Traumatic Stress Disorder. Journal of Neuroscience, 2021, 41, 901-910.	3.6	18
5	Alpha-synuclein pathology, microgliosis, and parvalbumin neuron loss in the amygdala associated with enhanced fear in the Thy1-aSyn model of Parkinson's disease. Neurobiology of Disease, 2021, 158, 105478.	4.4	15
6	The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice. ELife, 2021, 10, .	6.0	94
7	Stress Varies Along the Social Density Continuum. Frontiers in Systems Neuroscience, 2020, 14, 582985.	2.5	5
8	Neuropeptidergic Control of an Internal Brain State Produced by Prolonged Social Isolation Stress. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 97-103.	1.1	16
9	The Neuropeptide Tac2 Controls a Distributed Brain State Induced by Chronic Social Isolation Stress. Cell, 2018, 173, 1265-1279.e19.	28.9	211
10	Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. Nature, 2017, 550, 388-392.	27.8	172
11	Ventromedial hypothalamic neurons control a defensive emotion state. ELife, 2015, 4, .	6.0	926
12	Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5351-60.	7.1	248
13	Isomorphisms between psychological processes and neural mechanisms: From stimulus elements to genetic markers of activity. Neurobiology of Learning and Memory, 2014, 108, 5-13.	1.9	4
14	Neuronal Ensembles in Amygdala, Hippocampus, and Prefrontal Cortex Track Differential Components of Contextual Fear. Journal of Neuroscience, 2014, 34, 8462-8466.	3.6	185
15	Cholinergic Blockade Frees Fear Extinction from Its Contextual Dependency. Biological Psychiatry, 2013, 73, 345-352.	1.3	61
16	Prefrontal microcircuit underlies contextual learning after hippocampal loss. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9938-9943.	7.1	139
17	Contextual Fear Memories Formed in the Absence of the Dorsal Hippocampus Decay Across Time. Journal of Neuroscience, 2012, 32, 3393-3397.	3.6	68
18	Reinstatement of extinguished fear by an unextinguished conditional stimulus. Frontiers in Behavioral Neuroscience, 2012, 6, 18.	2.0	18

MORIEL ZELIKOWSKY

#	Article	IF	CITATIONS
19	Temporal factors control hippocampal contributions to fear renewal after extinction. Hippocampus, 2012, 22, 1096-1106.	1.9	59
20	Electrical Synapses Control Hippocampal Contributions to Fear Learning and Memory. Science, 2011, 331, 87-91.	12.6	113
21	Design of a Neurally Plausible Model of Fear Learning. Frontiers in Behavioral Neuroscience, 2011, 5, 41.	2.0	45
22	Conditional Analgesia, Negative Feedback, and Error Correction. , 2011, , 305-320.		2
23	Opioid regulation of Pavlovian overshadowing in fear conditioning Behavioral Neuroscience, 2010, 124, 510-519.	1.2	20
24	Optimizing inhibitory learning during exposure therapy. Behaviour Research and Therapy, 2008, 46, 5-27.	3.1	1,263