
Yuji Kasashima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2616804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decrease in Particles by Substituting Conductive Magnesium-Oxide Based Ceramics for Conventional Electrode Materials Used in Process Chamber of Plasma Etching. IEEE Transactions on Semiconductor Manufacturing, 2021, 34, 224-226.	1.7	4
2	Development of a novel plasma probe for the investigation and control of plasmaâ€enhanced chemical vapor deposition coating processes. Plasma Processes and Polymers, 2020, 17, 2000077.	3.0	3
3	Investigation of the relationship between plasma etching characteristics and microstructures of alumina ceramics for chamber parts. Japanese Journal of Applied Physics, 2019, 58, 041001.	1.5	8
4	Easy-to-use detection method for micro-arc discharge in plasma etching equipment by measuring current flowing to ground. Japanese Journal of Applied Physics, 2018, 57, 098002.	1.5	2
5	Development and evaluation of magnesium oxide-based ceramics for chamber parts in mass-production plasma etching equipment. Japanese Journal of Applied Physics, 2017, 56, 06HC01.	1.5	6
6	Feasibility study of detection of dielectric breakdown of gate oxide film by using acoustic emission method. Japanese Journal of Applied Physics, 2016, 55, 128001.	1.5	0
7	Feasibility study of monitoring of plasma etching chamber conditions using superimposed high-frequency signals on rf power transmission line. Review of Scientific Instruments, 2015, 86, 105107.	1.3	0
8	Monitoring of inner wall condition in mass-production plasma etching process using a load impedance monitoring system. Japanese Journal of Applied Physics, 2015, 54, 060301.	1.5	8
9	Numerous flaked particles instantaneously generated by micro-arc discharge in mass-production plasma etching equipment. Japanese Journal of Applied Physics, 2015, 54, 01AE02.	1.5	11
10	Many flaked particles caused by impulsive force of electric field stress and effect of electrostriction stress in mass-production plasma etching equipment. Japanese Journal of Applied Physics, 2014, 53, 040301.	1.5	12
11	Real-time characteristic impedance monitoring for end-point and anomaly detection in the plasma etching process. Japanese Journal of Applied Physics, 2014, 53, 03DC03.	1.5	7
12	Note: Practical monitoring system using characteristic impedance measurement during plasma processing. Review of Scientific Instruments, 2014, 85, 026103.	1.3	10
13	Detection of microarc discharge using a high-speed load impedance monitoring system. Applied Physics Express, 2014, 7, 096102.	2.4	6
14	In-situ detection method for wafer movement and micro-arc discharge around a wafer in plasma etching process using electrostatic chuck wafer stage with built-in acoustic emission sensor. Japanese Journal of Applied Physics, 2014, 53, 03DC04.	1.5	4
15	Transport of a helicon plasma by a convergent magnetic field for high speed and compact plasma etching. Journal Physics D: Applied Physics, 2014, 47, 425201.	2.8	14
16	Impulsive force phenomenon of electric field stress causing serious particle contamination in plasma etching equipment. Japanese Journal of Applied Physics, 2014, 53, 110308.	1.5	8
17	Instantaneous Generation of Many Flaked Particles by Impulsive Force of Electric Field Stress Acting on Inner Wall of Mass-Production Plasma Etching Equipment. Japanese Journal of Applied Physics, 2013, 52, 066201.	1.5	28
18	Detection of Micro-Arc Discharge Using ESC Wafer Stage With Built-In AE Sensor. IEEE Transactions on Semiconductor Manufacturing, 2013, 26, 350-354.	1.7	12