Sergei Tretiak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/261649/publications.pdf

Version: 2024-02-01

		7561	6465
382	28,504	77	157
papers	citations	h-index	g-index
393	393	393	24183
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347, 522-525.	6.0	2,978
2	High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016, 536, 312-316.	13.7	2,767
3	Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, 355, 1288-1292.	6.0	830
4	Spectrally Resolved Dynamics of Energy Transfer in Quantum-Dot Assemblies: Towards Engineered Energy Flows in Artificial Materials. Physical Review Letters, 2002, 89, 186802.	2.9	617
5	Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nature Communications, 2016, 7, 11574.	5.8	584
6	Scaling law for excitons in 2D perovskite quantum wells. Nature Communications, 2018, 9, 2254.	5.8	559
7	Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science, 2018, 360, 67-70.	6.0	554
8	Density Matrix Analysis and Simulation of Electronic Excitations in Conjugated and Aggregated Molecules. Chemical Reviews, 2002, 102, 3171-3212.	23.0	519
9	Enhanced Twoâ€Photon Absorption of Organic Chromophores: Theoretical and Experimental Assessments. Advanced Materials, 2008, 20, 4641-4678.	11.1	502
10	Type-II Core/Shell CdS/ZnSe Nanocrystals:  Synthesis, Electronic Structures, and Spectroscopic Properties. Journal of the American Chemical Society, 2007, 129, 11708-11719.	6.6	402
11	Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nature Communications, 2019, 10, 2903.	5.8	399
12	Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors. ACS Nano, 2016, 10, 9776-9786.	7.3	351
13	Electronic Coherence and Collective Optical Excitations of Conjugated Molecules. Science, 1997, 277, 781-787.	6.0	345
14	Effects of (Multi)branching of Dipolar Chromophores on Photophysical Properties and Two-Photon Absorption. Journal of Physical Chemistry A, 2005, 109, 3024-3037.	1.1	341
15	Conformational Dynamics of Photoexcited Conjugated Molecules. Physical Review Letters, 2002, 89, 097402.	2.9	340
16	Dependence of Spurious Charge-Transfer Excited States on Orbital Exchange in TDDFT:  Large Molecules and Clusters. Journal of Chemical Theory and Computation, 2007, 3, 976-987.	2.3	295
17	Third and Fourth Optical Transitions in Semiconducting Carbon Nanotubes. Physical Review Letters, 2007, 98, 067401.	2.9	274
18	Stable Lightâ€Emitting Diodes Using Phaseâ€Pure Ruddlesden–Popper Layered Perovskites. Advanced Materials, 2018, 30, 1704217.	11.1	258

#	Article	IF	CITATIONS
19	Effect of Surface Ligands on Optical and Electronic Spectra of Semiconductor Nanoclusters. Journal of the American Chemical Society, 2009, 131, 7717-7726.	6.6	245
20	Polaron Stabilization by Cooperative Lattice Distortion and Cation Rotations in Hybrid Perovskite Materials. Nano Letters, 2016, 16, 3809-3816.	4.5	245
21	Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chemical Reviews, 2020, 120, 2215-2287.	23.0	231
22	Effect of Quantum and Dielectric Confinement on the Excitonâ^'Exciton Interaction Energy in Type II Core/Shell Semiconductor Nanocrystals. Nano Letters, 2007, 7, 108-115.	4.5	217
23	Stilbenoid Dimers:  Dissection of a Paracyclophane Chromophore. Journal of the American Chemical Society, 1998, 120, 9188-9204.	6.6	214
24	Morphology Effectively Controls Singlet-Triplet Exciton Relaxation and Charge Transport in Organic Semiconductors. Physical Review Letters, 2009, 102, 017401.	2.9	213
25	Nonadiabatic Excited-State Molecular Dynamics: Modeling Photophysics in Organic Conjugated Materials. Accounts of Chemical Research, 2014, 47, 1155-1164.	7.6	201
26	Localized Electronic Excitations in Phenylacetylene Dendrimers. Journal of Physical Chemistry B, 1998, 102, 3310-3315.	1.2	198
27	Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide. Advanced Materials, 2018, 30, 1703879.	11.1	198
28	Exciton sizes of conducting polymers predicted by time-dependent density functional theory. Physical Review B, 2005, 71 , .	1.1	192
29	Prediction of Two-Photon Absorption Properties for Organic Chromophores Using Time-Dependent Density-Functional Theory. Journal of Physical Chemistry B, 2004, 108, 899-907.	1.2	178
30	Identification of unavoided crossings in nonadiabatic photoexcited dynamics involving multiple electronic states in polyatomic conjugated molecules. Journal of Chemical Physics, 2012, 137, 014512.	1.2	175
31	Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes. Nature Physics, 2006, 2, 515-520.	6.5	174
32	Nonadiabatic Excited-State Molecular Dynamics Modeling of Photoinduced Dynamics in Conjugated Molecules. Journal of Physical Chemistry B, 2011, 115, 5402-5414.	1.2	172
33	Light Amplification Using Inverted Core/Shell Nanocrystals:Â Towards Lasing in the Single-Exciton Regime. Journal of Physical Chemistry B, 2004, 108, 10625-10630.	1.2	165
34	Two-Photon Absorption in Three-Dimensional Chromophores Based on [2.2]-Paracyclophane. Journal of the American Chemical Society, 2004, 126, 11529-11542.	6.6	161
35	Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chemical Reviews, 2015, 115, 5929-5978.	23.0	160
36	A sensitive and robust thin-film x-ray detector using 2D layered perovskite diodes. Science Advances, 2020, 6, eaay0815.	4.7	153

#	Article	IF	Citations
37	Composite Nature of Layered Hybrid Perovskites: Assessment on Quantum and Dielectric Confinements and Band Alignment. ACS Nano, 2018, 12, 3321-3332.	7.3	146
38	Resonant nonlinear polarizabilities in the time-dependent density functional theory. Journal of Chemical Physics, 2003, 119, 8809-8823.	1.2	142
39	Self-Trapping of Excitons, Violation of Condon Approximation, and Efficient Fluorescence in Conjugated Cycloparaphenylenes. Nano Letters, 2014, 14, 6539-6546.	4.5	142
40	Scanning Tunneling Microscopy of DNA-Wrapped Carbon Nanotubes. Nano Letters, 2009, 9, 12-17.	4.5	140
41	Electronic Structure and Chemical Nature of Oxygen Dopant States in Carbon Nanotubes. ACS Nano, 2014, 8, 10782-10789.	7.3	131
42	Effect of Precursor Solution Aging on the Crystallinity and Photovoltaic Performance of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602159.	10.2	130
43	Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nature Communications, 2018, 9, 2525.	5.8	129
44	Surface Ligands Increase Photoexcitation Relaxation Rates in CdSe Quantum Dots. ACS Nano, 2012, 6, 6515-6524.	7.3	128
45	Bacteriochlorophyll and Carotenoid Excitonic Couplings in the LH2 System of Purple Bacteria. Journal of Physical Chemistry B, 2000, 104, 9540-9553.	1.2	127
46	Two-Photon Transitions in Quadrupolar and Branched Chromophores:  Experiment and Theory. Journal of Physical Chemistry B, 2007, 111, 9468-9483.	1.2	127
47	Nonadiabatic excited-state molecular dynamics: Treatment of electronic decoherence. Journal of Chemical Physics, 2013, 138, 224111.	1.2	127
48	Two-Dimensional Real-Space Analysis of Optical Excitations in Acceptor-Substituted Carotenoids. Journal of the American Chemical Society, 1997, 119, 11408-11419.	6.6	123
49	Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals. Nanoscale, 2012, 4, 904-914.	2.8	123
50	Femtosecond torsional relaxation. Nature Physics, 2012, 8, 225-231.	6.5	122
51	Energetic Chromophores: Low-Energy Laser Initiation in Explosive Fe(II) Tetrazine Complexes. Journal of the American Chemical Society, 2016, 138, 4685-4692.	6.6	120
52	Oligophenylenevinylene Phane Dimers:Â Probing the Effect of Contact Site on the Optical Properties of Bichromophoric Pairs. Journal of the American Chemical Society, 2000, 122, 1289-1297.	6.6	116
53	Exciton Hamiltonian for the Bacteriochlorophyll System in the LH2 Antenna Complex of Purple Bacteria. Journal of Physical Chemistry B, 2000, 104, 4519-4528.	1.2	114
54	Polarons in Halide Perovskites: A Perspective. Journal of Physical Chemistry Letters, 2020, 11, 3271-3286.	2.1	110

#	Article	IF	CITATIONS
55	Electron-Vibrational Dynamics of Photoexcited Polyfluorenes. Journal of the American Chemical Society, 2004, 126, 12130-12140.	6.6	108
56	Computational Dissection of Two-Dimensional Rectangular Titanium Mononitride TiN: Auxetics and Promises for Photocatalysis. Nano Letters, 2017, 17, 4466-4472.	4.5	104
57	The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules. Scientific Data, 2020, 7, 134.	2.4	104
58	Concept of Lattice Mismatch and Emergence of Surface States in Two-dimensional Hybrid Perovskite Quantum Wells. Nano Letters, 2018, 18, 5603-5609.	4.5	103
59	Localization of Electronic Excitations in Conjugated Polymers Studied by DFT. Journal of Physical Chemistry Letters, 2011, 2, 566-571.	2.1	96
60	Excitonic couplings and electronic coherence in bridged naphthalene dimers. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13003-13008.	3.3	95
61	Reaction Dynamics of a Photochromic Fluorescing Dithienylethene. Journal of Physical Chemistry A, 2001, 105, 1741-1749.	1.1	93
62	Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance. Journal of Applied Physics, 2006, 99, 034309.	1.1	93
63	Representation independent algorithms for molecular response calculations in time-dependent self-consistent field theories. Journal of Chemical Physics, 2009, 130, 054111.	1.2	92
64	Size Scaling of Third-Order Off-Resonant Polarizabilities. Electronic Coherence in Organic Oligomers. Journal of the American Chemical Society, 2000, 122, 452-459.	6.6	91
65	Exciton scattering and localization in branched dendrimeric structures. Nature Physics, 2006, 2, 631-635.	6.5	91
66	Exciton-scaling and optical excitations of self-similar phenylacetylene dendrimers. Journal of Chemical Physics, 1999, 110, 8161-8175.	1.2	90
67	How Chromophore Shape Determines the Spectroscopy of Phenyleneâ^'Vinylenes:  Origin of Spectral Broadening in the Absence of Aggregation. Journal of Physical Chemistry B, 2008, 112, 4859-4864.	1.2	90
68	Reaction dynamics of photochromic dithienylethene derivatives. Chemical Physics, 1999, 246, 115-125.	0.9	89
69	A new pH sensitive fluorescent and white light emissive material through controlled intermolecular charge transfer. Chemical Science, 2015, 6, 789-797.	3.7	89
70	Discovering a Transferable Charge Assignment Model Using Machine Learning. Journal of Physical Chemistry Letters, 2018, 9, 4495-4501.	2.1	88
71	Interchain Electronic Excitations in Poly(phenylenevinylene) (PPV) Aggregates. Journal of Physical Chemistry B, 2000, 104, 7029-7037.	1.2	85
72	Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters. Journal of Chemical Physics, 2012, 136, 054108.	1.2	84

#	Article	IF	CITATIONS
73	Theoretical Description of Structural and Electronic Properties of Organic Photovoltaic Materials. Annual Review of Physical Chemistry, 2015, 66, 305-330.	4.8	82
74	Analysis of Absorption Spectra of Zinc Porphyrin, Zinc meso-Tetraphenylporphyrin, and Halogenated Derivatives. Journal of Physical Chemistry A, 2002, 106, 10285-10293.	1.1	81
75	Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks. Journal of Chemical Theory and Computation, 2018, 14, 4687-4698.	2.3	81
76	Collective electronic oscillators for nonlinear optical response of conjugated molecules. Chemical Physics Letters, 1996, 259, 55-61.	1.2	80
77	Triplet State Absorption in Carbon Nanotubes:Â A TDâ^'DFT Study. Nano Letters, 2007, 7, 2201-2206.	4.5	80
78	Electronic Structure of Ligated CdSe Clusters: Dependence on DFT Methodology. Journal of Physical Chemistry C, 2011, 115, 15793-15800.	1.5	80
79	Krylov-space algorithms for time-dependent Hartree–Fock and density functional computations. Journal of Chemical Physics, 2000, 113, 36-43.	1.2	79
80	Low-Temperature Single Carbon Nanotube Spectroscopy of sp ³ Quantum Defects. ACS Nano, 2017, 11, 10785-10796.	7.3	79
81	Narrow-band single-photon emission through selective aryl functionalization of zigzag carbon nanotubes. Nature Chemistry, 2018, 10, 1089-1095.	6.6	78
82	Nonadiabatic Molecular Dynamics Simulations of the Energy Transfer between Building Blocks in a Phenylene Ethynylene Dendrimer. Journal of Physical Chemistry A, 2009, 113, 7535-7542.	1.1	76
83	Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions. ACS Nano, 2018, 12, 8415-8422.	7.3	75
84	Recursive densityâ€matrixâ€spectralâ€moment algorithm for molecular nonlinear polarizabilities. Journal of Chemical Physics, 1996, 105, 8914-8928.	1.2	72
85	Brightening of the Lowest Exciton in Carbon Nanotubes via Chemical Functionalization. Nano Letters, 2012, 12, 2306-2312.	4.5	72
86	Structurally Defined 3D Nanographene Assemblies via Bottomâ€Up Chemical Synthesis for Highly Efficient Lithium Storage. Advanced Materials, 2016, 28, 10250-10256.	11,1	72
87	Charge carrier dynamics in two-dimensional hybrid perovskites: Dion–Jacobson <i>vs. </i> Ruddlesden–Popper phases. Journal of Materials Chemistry A, 2020, 8, 22009-22022.	5.2	72
88	Coherent exciton-vibrational dynamics and energy transfer in conjugated organics. Nature Communications, 2018, 9, 2316.	5.8	71
89	Photoexcited breathers in conjugated polyenes: An excited-state molecular dynamics study. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2185-2190.	3.3	68
90	A joint theoretical and experimental study of phenylene–acetylene molecular wires. Chemical Physics Letters, 2005, 401, 149-156.	1.2	68

#	Article	IF	Citations
91	Comparison of TD-DFT Methods for the Calculation of Two-Photon Absorption Spectra of Oligophenylvinylenes. Journal of Physical Chemistry C, 2013, 117, 18170-18189.	1.5	68
92	Fluorescent Carbon Nanotube Defects Manifest Substantial Vibrational Reorganization. Journal of Physical Chemistry C, 2016, 120, 11268-11276.	1.5	68
93	Simulations of two-dimensional femtosecond infrared photon echoes of glycine dipeptide. Journal of Raman Spectroscopy, 2000, 31, 125-135.	1.2	67
94	Electronic Structure of Self-Assembled Amorphous Polyfluorenes. ACS Nano, 2008, 2, 1381-1388.	7.3	65
95	The Effects of Electronic Impurities and Electron–Hole Recombination Dynamics on Largeâ€Grain Organic–Inorganic Perovskite Photovoltaic Efficiencies. Advanced Functional Materials, 2016, 26, 4283-4292.	7.8	65
96	DFT Study of Ligand Binding to Small Gold Clusters. Journal of Physical Chemistry Letters, 2010, 1, 927-931.	2.1	64
97	Chemical Bonding and Size Scaling of Nonlinear Polarizabilities of Conjugated Polymers. Physical Review Letters, 1996, 77, 4656-4659.	2.9	62
98	Excitonic effects in a time-dependent density functional theory. Journal of Chemical Physics, 2007, 127, 114902.	1.2	61
99	Determination of Exciton-Phonon Coupling Elements in Single-Walled Carbon Nanotubes by Raman Overtone Analysis. Physical Review Letters, 2007, 98, 037405.	2.9	61
100	Lattice Expansion in Hybrid Perovskites: Effect on Optoelectronic Properties and Charge Carrier Dynamics. Journal of Physical Chemistry Letters, 2019, 10, 5000-5007.	2.1	60
101	Theoretical study of the effects of solvent environment on photophysical properties and electronic structure of paracyclophane chromophores. Journal of Chemical Physics, 2005, 122, 224505.	1.2	59
102	Excitonic and Vibrational Properties of Singleâ€Walled Semiconducting Carbon Nanotubes. Advanced Functional Materials, 2007, 17, 3405-3420.	7.8	59
103	Unidirectional Energy Transfer in Conjugated Molecules: The Crucial Role of High-Frequency C≡C Bonds. Journal of Physical Chemistry Letters, 2010, 1, 2699-2704.	2.1	59
104	Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots. ACS Nano, 2015, 9, 9106-9116.	7.3	59
105	Electronic Delocalization, Vibrational Dynamics, and Energy Transfer in Organic Chromophores. Journal of Physical Chemistry Letters, 2017, 8, 3020-3031.	2.1	59
106	Quantum chemistry of the minimal CdSe clusters. Journal of Chemical Physics, 2008, 129, 074709.	1.2	58
107	Non-radiative relaxation of photoexcited chlorophylls: theoretical and experimental study. Scientific Reports, 2015, 5, 13625.	1.6	58
108	Exciton Localization and Optical Emission in Aryl-Functionalized Carbon Nanotubes. Journal of Physical Chemistry C, 2018, 122, 1828-1838.	1.5	58

#	Article	IF	Citations
109	A Combined Experimental and Theoretical Study of Conformational Preferences of Molecular Semiconductors. Journal of Physical Chemistry C, 2014, 118, 15610-15623.	1.5	57
110	Electronic Properties of DNA Base Molecules Adsorbed on a Metallic Surface. Journal of Physical Chemistry C, 2007, 111, 14541-14551.	1.5	56
111	Ideal dipole approximation fails to predict electronic coupling and energy transfer between semiconducting single-wall carbon nanotubes. Journal of Chemical Physics, 2009, 130, 081104.	1.2	56
112	Effect of deprotonation on absorption and emission spectra of Ru(ii)-bpy complexes functionalized with carboxyl groups. Physical Chemistry Chemical Physics, 2010, 12, 8902.	1.3	56
113	Shishiodoshi unidirectional energy transfer mechanism in phenylene ethynylene dendrimers. Journal of Chemical Physics, 2012, 137, 22A526.	1.2	56
114	Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes. Nanoscale, 2015, 7, 20521-20530.	2.8	56
115	NEXMD Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2020, 16, 5771-5783.	2.3	56
116	Role of Donorâ^'Acceptor Strengths and Separation on the Two-Photon Absorption Response of Cytotoxic Dyes:  A TD-DFT Study. Journal of Physical Chemistry A, 2005, 109, 7276-7284.	1.1	55
117	Comparison of LC-TDDFT and ADC(2) Methods in Computations of Bright and Charge Transfer States in Stacked Oligothiophenes. Journal of Chemical Theory and Computation, 2014, 10, 3280-3289.	2.3	54
118	First-Principles Study of p-n-Doped Silicon Quantum Dots: Charge Transfer, Energy Dissipation, and Time-Resolved Emission. Journal of Physical Chemistry Letters, 2013, 4, 2906-2913.	2.1	53
119	Artifacts due to trivial unavoided crossings in the modeling of photoinduced energy transfer dynamics in extended conjugated molecules. Chemical Physics Letters, 2013, 590, 208-213.	1.2	53
120	Simultaneous Control of Emission Localization and Two-Photon Absorption Efficiency in Dissymmetrical Chromophores. Journal of Physical Chemistry B, 2010, 114, 3152-3169.	1.2	52
121	Geometry Distortion and Small Polaron Binding Energy Changes with Ionic Substitution in Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 7130-7136.	2.1	52
122	Controlling Defect-State Photophysics in Covalently Functionalized Single-Walled Carbon Nanotubes. Accounts of Chemical Research, 2020, 53, 1791-1801.	7.6	52
123	Violation of the Condon Approximation in Semiconducting Carbon Nanotubes. ACS Nano, 2011, 5, 5233-5241.	7. 3	51
124	Non-adiabatic excited state molecular dynamics of phenylene ethynylene dendrimer using a multiconfigurational Ehrenfest approach. Physical Chemistry Chemical Physics, 2016, 18, 10028-10040.	1.3	51
125	Analysis of State-Specific Vibrations Coupled to the Unidirectional Energy Transfer in Conjugated Dendrimers. Journal of Physical Chemistry A, 2012, 116, 9802-9810.	1.1	50
126	Role of Geometric Distortion and Polarization in Localizing Electronic Excitations in Conjugated Polymers. Journal of Chemical Theory and Computation, 2013, 9, 1144-1154.	2.3	50

#	Article	IF	CITATIONS
127	Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations. Journal of the American Chemical Society, 2015, 137, 11637-11644.	6.6	50
128	Optoelectronic Properties of Two-Dimensional Bromide Perovskites: Influences of Spacer Cations. Journal of Physical Chemistry Letters, 2020, 11, 2955-2964.	2.1	50
129	Cross-polarized excitons in carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6797-6802.	3.3	49
130	Interlayer-Decoupled Sc-Based Mxene with High Carrier Mobility and Strong Light-Harvesting Ability. Journal of Physical Chemistry Letters, 2018, 9, 6915-6920.	2.1	49
131	Excited state molecular dynamics simulations of nonlinear push–pull chromophores. Chemical Physics Letters, 2003, 367, 293-307.	1.2	47
132	Linear optical response of current-carrying molecular junction: A nonequilibrium Green's function–time-dependent density functional theory approach. Journal of Chemical Physics, 2008, 128, 124705.	1.2	47
133	Ab Initio Study of a Molecular Crystal for Photovoltaics: Light Absorption, Exciton and Charge Carrier Transport. Journal of Physical Chemistry C, 2013, 117, 4920-4930.	1.5	47
134	Automated discovery of a robust interatomic potential for aluminum. Nature Communications, 2021, 12, 1257.	5.8	47
135	Excitons and Peierls Distortion in Conjugated Carbon Nanotubes. Nano Letters, 2007, 7, 86-92.	4.5	46
136	Ultrafast intersystem-crossing in platinum containing π-conjugated polymers with tunable spin-orbit coupling. Scientific Reports, 2013, 3, 2653.	1.6	46
137	Topological Considerations for the Design of Molecular Donors with Multiple Absorbing Units. Journal of the American Chemical Society, 2014, 136, 5591-5594.	6.6	46
138	Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients. Journal of Chemical Physics, 2015, 143, 054305.	1.2	46
139	Effects of Chlorine Mixing on Optoelectronics, Ion Migration, and Gamma-Ray Detection in Bromide Perovskites. Chemistry of Materials, 2020, 32, 1854-1863.	3.2	46
140	Teaching a neural network to attach and detach electrons from molecules. Nature Communications, 2021, 12, 4870.	5.8	46
141	Low-Lying Exciton States Determine the Photophysics of Semiconducting Single Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 11139-11149.	1.5	45
142	Semiclassical Monte-Carlo approach for modelling non-adiabatic dynamics in extended molecules. Nature Communications, 2013, 4, 2144.	5.8	45
143	Two-Photon Excitation of Substituted Enediynes. Journal of Physical Chemistry A, 2006, 110, 241-251.	1.1	44
144	Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies. Applied Physics Letters, 2014, 105, .	1.5	43

#	Article	IF	Citations
145	Origin, scaling, and saturation of second order polarizabilities in donor/acceptor polyenes. Chemical Physics Letters, 1998, 287, 75-82.	1.2	42
146	Excited states and optical response of a donor–acceptor substituted polyene: A TD-DFT study. Chemical Physics Letters, 2007, 433, 305-311.	1.2	42
147	Formation of Assemblies Comprising Ru–Polypyridine Complexes and CdSe Nanocrystals Studied by ATR-FTIR Spectroscopy and DFT Modeling. Langmuir, 2011, 27, 8377-8383.	1.6	42
148	Electronic structure and optical spectra of semiconducting carbon nanotubes functionalized by diazonium salts. Chemical Physics, 2013, 413, 89-101.	0.9	42
149	Frenkel-exciton Hamiltonian for dendrimeric nanostar. Journal of Luminescence, 2000, 87-89, 115-118.	1.5	41
150	Interâ€Aromatic Distances in <i>Geobacter Sulfurreducens</i> Pili Relevant to Biofilm Charge Transport. Advanced Materials, 2015, 27, 1908-1911.	11.1	41
151	Solvent- and Wavelength-Dependent Photoluminescence Relaxation Dynamics of Carbon Nanotube sp ³ Defect States. ACS Nano, 2018, 12, 8060-8070.	7.3	41
152	Tuning Electronic Structure in Layered Hybrid Perovskites with Organic Spacer Substitution. Nano Letters, 2019, 19, 8732-8740.	4.5	41
153	Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations. Physical Chemistry Chemical Physics, 2009, 11, 4113.	1.3	40
154	Ultrafast Photodissociation Dynamics of Nitromethane. Journal of Physical Chemistry A, 2016, 120, 519-526.	1.1	39
155	Photoexcited Nonadiabatic Dynamics of Solvated Push–Pull π-Conjugated Oligomers with the NEXMD Software. Journal of Chemical Theory and Computation, 2018, 14, 3955-3966.	2.3	39
156	Critical Role of Organic Spacers for Bright 2D Layered Perovskites Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 1903202.	5.6	39
157	The Rise of Neural Networks for Materials and Chemical Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 6227-6243.	2.1	39
158	Excitation transfer processes in a phosphor-doped poly(p-phenylene vinylene) light-emitting diode. Physical Review B, 2002, 65, .	1.1	38
159	Calculations of the third-order nonlinear optical responses in push–pull chromophores with a time-dependent density functional theory. Chemical Physics Letters, 2004, 392, 444-451.	1.2	38
160	Tailored Electronic Structure and Optical Properties of Conjugated Systems through Aggregates and Dipole–Dipole Interactions. ACS Applied Materials & Dipole†1013, 5, 4685-4695.	4.0	38
161	Excited-State Structure of Oligothiophene Dendrimers: Computational and Experimental Study. Journal of Physical Chemistry B, 2010, 114, 15808-15817.	1.2	37
162	Mechanism of Electrolyte-Induced Brightening in Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2013, 135, 3379-3382.	6.6	37

#	Article	IF	CITATION
163	Electron-vibrational relaxation of photoexcited polyfluorenes in the presence of chemical defects: A theoretical study. Chemical Physics Letters, 2003, 372, 403-408.	1.2	35
164	Influence of Surfactants and Charges on CdSe Quantum Dots. Journal of Cluster Science, 2011, 22, 405-431.	1.7	35
165	Two-Photon Absorption in CdSe Colloidal Quantum Dots Compared to Organic Molecules. ACS Nano, 2014, 8, 12572-12586.	7.3	35
166	Photoactive High Explosives: Linear and Nonlinear Photochemistry of Petrin Tetrazine Chloride. Journal of Physical Chemistry A, 2015, 119, 4846-4855.	1.1	34
167	Two-dimensional hexagonal M ₃ C ₂ (M = Zn, Cd and Hg) monolayers: novel quantum spin Hall insulators and Dirac cone materials. Journal of Materials Chemistry C, 2017, 5, 9181-9187.	2.7	34
168	Conformational disorder in energy transfer: beyond FÃ \P rster theory. Physical Chemistry Chemical Physics, 2013, 15, 9245.	1.3	33
169	Cation Alloying Delocalizes Polarons in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 3516-3524.	2.1	33
170	Optical Effects of Divalent Functionalization of Carbon Nanotubes. Chemistry of Materials, 2019, 31, 6950-6961.	3.2	33
171	Excited electronic states of carotenoids: Time-dependent density-matrix-response algorithm. International Journal of Quantum Chemistry, 1998, 70, 711-727.	1.0	32
172	Two-exciton states and spectroscopy of phenylacetylene dendrimers. Journal of Chemical Physics, 1999, 111, 4158-4168.	1.2	32
173	Femtosecond reaction dynamics of a photochromic dithienylethene derivative. Journal of Luminescence, 2000, 87-89, 742-744.	1.5	32
174	Performance of a nonempirical meta–generalized gradient approximation density functional for excitation energies. Journal of Chemical Physics, 2008, 128, 084110.	1.2	32
175	Interference of Interchromophoric Energy-Transfer Pathways in π-Conjugated Macrocycles. Journal of Physical Chemistry Letters, 2016, 7, 4936-4944.	2.1	32
176	Conditions for Directional Charge Transfer in CdSe Quantum Dots Functionalized by Ru(II) Polypyridine Complexes. Journal of Physical Chemistry Letters, 2014, 5, 3565-3576.	2.1	31
177	Recent advances of novel ultrathin two-dimensional silicon carbides from a theoretical perspective. Nanoscale, 2020, 12, 4269-4282.	2.8	31
178	CEO/semiempirical calculations of UV–visible spectra in conjugated molecules. Chemical Physics Letters, 2000, 331, 561-568.	1.2	30
179	Raman Scattering in Molecular Junctions: A Pseudoparticle Formulation. Nano Letters, 2014, 14, 699-703.	4.5	30
180	Internal Conversion and Vibrational Energy Redistribution in Chlorophyll A. Journal of Physical Chemistry B, 2016, 120, 49-58.	1.2	30

#	Article	IF	Citations
181	Photoinduced Intra- and Intermolecular Energy Transfer in ChlorophyllaDimer. Journal of Physical Chemistry B, 2017, 121, 5331-5339.	1.2	30
182	Multiscale Modeling of Electronic Excitations in Branched Conjugated Molecules Using an Exciton Scattering Approach. Physical Review Letters, 2008, 100, 057405.	2.9	29
183	Ultrafast electronic energy relaxation in a conjugated dendrimer leading to inter-branch energy redistribution. Physical Chemistry Chemical Physics, 2016, 18, 25080-25089.	1.3	29
184	Halide Perovskite High- $\langle i \rangle$ k $\langle i \rangle$ Field Effect Transistors with Dynamically Reconfigurable Ambipolarity. , 2019, 1, 633-640.		29
185	Long carrier diffusion length in two-dimensional lead halide perovskite single crystals. CheM, 2022, 8, 1107-1120.	5.8	29
186	Effect of intramolecular disorder and intermolecular electronic interactions on the electronic structure of poly-p-phenylene vinylene. Physical Review B, 2007, 76, .	1.1	28
187	Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations. Journal of Chemical Physics, 2015, 142, 044103.	1.2	28
188	Density of States Broadening in CH ₃ NH ₃ PbI ₃ Hybrid Perovskites Understood from ab Initio Molecular Dynamics Simulations. ACS Energy Letters, 2018, 3, 787-793.	8.8	28
189	Robust Unencapsulated Perovskite Solar Cells Protected by a Fluorinated Fullerene Electron Transporting Layer. ACS Energy Letters, 2021, 6, 3376-3385.	8.8	27
190	Ligand Effects on Optical Properties of Small Gold Clusters: A TDDFT Study. Journal of Physical Chemistry C, 2012, 116, 3242-3249.	1.5	26
191	Carbon nanorings with inserted acenes: breaking symmetry in excited state dynamics. Scientific Reports, 2016, 6, 31253.	1.6	26
192	An <i>ab initio</i> multiple cloning approach for the simulation of photoinduced dynamics in conjugated molecules. Physical Chemistry Chemical Physics, 2018, 20, 17762-17772.	1.3	26
193	Study of the non-covalent interactions in Langmuir–Blodgett films: An interplay between πⰒπ and dipole–dipole interactions. Thin Solid Films, 2007, 516, 58-66.	0.8	25
194	Universal Scaling of Intrinsic Resistivity in Twoâ€Dimensional Metallic Borophene. Angewandte Chemie - International Edition, 2018, 57, 4585-4589.	7.2	25
195	Machine learned Hýckel theory: Interfacing physics and deep neural networks. Journal of Chemical Physics, 2021, 154, 244108.	1.2	25
196	Polymorphism of Crystalline Molecular Donors for Solution-Processed Organic Photovoltaics. Journal of Physical Chemistry Letters, 2014, 5, 2700-2704.	2.1	24
197	Photoinduced dynamics in cycloparaphenylenes: planarization, electron–phonon coupling, localization and intra-ring migration of the electronic excitation. Physical Chemistry Chemical Physics, 2017, 19, 30914-30924.	1.3	24
198	Ab initio study of two-dimensional PdPS as an ideal light harvester and promising catalyst for hydrogen evolution reaction. Materials Today Energy, 2018, 7, 136-140.	2.5	24

#	Article	IF	CITATIONS
199	Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions. Journal of Chemical Physics, 2019, 151, 154109.	1.2	24
200	Graphics Processing Unit-Accelerated Semiempirical Born Oppenheimer Molecular Dynamics Using PyTorch. Journal of Chemical Theory and Computation, 2020, 16, 4951-4962.	2.3	24
201	Enantioselectivity in the Noyori–lkariya Asymmetric Transfer Hydrogenation of Ketones. Organometallics, 2021, 40, 1402-1410.	1.1	24
202	Influence of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ë</mml:mi></mml:math> -conjugated cations and halogen substitution on the optoelectronic and excitonic properties of layered hybrid perovskites. Physical Review Materials, 2018, 2, .	0.9	24
203	Density-matrix-spectroscopic algorithm for excited-state adiabatic surfaces and molecular dynamics of a protonated Schiff base. Journal of Chemical Physics, 1999, 110, 8328-8337.	1.2	23
204	Ground-state density-matrix algorithm for excited-state adiabatic surfaces: application to polyenes. Chemical Physics Letters, 1999, 302, 77-84.	1.2	23
205	Electronic versus vibrational optical nonlinearities of push-pull polymers. Chemical Physics Letters, 2000, 319, 261-264.	1.2	23
206	Photoexcited carrier relaxation dynamics in pentacene probed by ultrafast optical spectroscopy: Influence of morphology on relaxation processes. Physica B: Condensed Matter, 2009, 404, 3127-3130.	1.3	23
207	Dynamics of charge transfer at Au/Si metal-semiconductor nano-interface. Molecular Physics, 2014, 112, 474-484.	0.8	23
208	Computational Study of Photoexcited Dynamics in Bichromophoric Cross-Shaped Oligofluorene. Journal of Physical Chemistry A, 2014, 118, 10742-10753.	1,1	23
209	Signature of Nonadiabatic Coupling in Excited-State Vibrational Modes. Journal of Physical Chemistry A, 2014, 118, 10372-10379.	1.1	23
210	Photoexcited Energy Transfer in a Weakly Coupled Dimer. Journal of Physical Chemistry B, 2015, 119, 7242-7252.	1.2	23
211	Tunable Optical Features of Graphene Quantum Dots from Edge Functionalization. Journal of Physical Chemistry C, 2021, 125, 9244-9252.	1.5	23
212	Single Crystal Microwires of <i>p</i> â€DTS(FBTTh ₂) ₂ and Their Use in the Fabrication of Fieldâ€Effect Transistors and Photodetectors. Advanced Functional Materials, 2018, 28, 1702073.	7.8	22
213	Mod(n-m,3) Dependence of Defect-State Emission Bands in Aryl-Functionalized Carbon Nanotubes. Nano Letters, 2019, 19, 8503-8509.	4 . 5	22
214	Machine learning approaches for structural and thermodynamic properties of a Lennard-Jones fluid. Journal of Chemical Physics, 2020, 153, 104502.	1.2	22
215	Multifunctional Cellulose Nanocrystals as a High-Efficient Polysulfide Stopper for Practical Li–S Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17592-17601.	4.0	22
216	The working principle of hybrid perovskite gamma-ray photon counter. Materials Today, 2020, 37, 27-34.	8.3	22

#	Article	IF	CITATIONS
217	Intermolecular conical intersections in molecular aggregates. Nature Nanotechnology, 2021, 16, 63-68.	15.6	22
218	Synthesis and Characterization of Amphiphilic Phenylene Ethynylene Oligomers and Their Langmuirâ Blodgett Films. Langmuir, 2006, 22, 8813-8820.	1.6	21
219	Morphology and Optical Response of Carbon Nanotubes Functionalized by Conjugated Polymers. Journal of Physical Chemistry C, 2012, 116, 6831-6840.	1.5	21
220	Correction Scheme for Comparison of Computed and Experimental Optical Transition Energies in Functionalized Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2018, 9, 2460-2468.	2.1	21
221	Importance of Vacancies and Doping in the Hole-Transporting Nickel Oxide Interface with Halide Perovskites. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6633-6640.	4.0	21
222	Role of the Metal–Semiconductor Interface in Halide Perovskite Devices for Radiation Photon Counting. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45533-45540.	4.0	21
223	Ultrafast Non-Förster Intramolecular Donor–Acceptor Excitation Energy Transfer. Journal of Physical Chemistry Letters, 2017, 8, 1688-1694.	2.1	20
224	First Principles Nonadiabatic Excited-State Molecular Dynamics in NWChem. Journal of Chemical Theory and Computation, 2020, 16, 6418-6427.	2.3	20
225	Nonadiabatic Excited-State Molecular Dynamics Methodologies: Comparison and Convergence. Journal of Physical Chemistry Letters, 2021, 12, 2970-2982.	2.1	20
226	Modeling of internal conversion in photoexcited conjugated molecular donors used in organic photovoltaics. Energy and Environmental Science, 2014, 7, 1175.	15.6	19
227	Raman-Active Modes of Even-Numbered Cycloparaphenylenes: Comparisons between Experiments and Density Functional Theory (DFT) Calculations with Group Theory Arguments. Journal of Physical Chemistry C, 2015, 119, 2879-2887.	1.5	19
228	Singlet and triplet excitons and charge polarons in cycloparaphenylenes: a density functional theory study. Physical Chemistry Chemical Physics, 2015, 17, 14613-14622.	1.3	19
229	Two-Photon Absorption in Conjugated Energetic Molecules. Journal of Physical Chemistry A, 2016, 120, 4455-4464.	1.1	19
230	Millimeterâ€Size Allâ€norganic Perovskite Crystalline Thin Film Grown by Chemical Vapor Deposition. Advanced Functional Materials, 2021, 31, 2101058.	7.8	19
231	Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,	3.3	19
232	Interface Design Principles for Highâ€Performance Organic Semiconductor Devices. Advanced Science, 2015, 2, 1500024.	5.6	18
233	Coupled wave-packets for non-adiabatic molecular dynamics: a generalization of Gaussian wave-packet dynamics to multiple potential energy surfaces. Chemical Science, 2016, 7, 4905-4911.	3.7	18
234	Lowest-Energy Crystalline Polymorphs of P3HT. Journal of Physical Chemistry C, 2018, 122, 9141-9151.	1.5	18

#	Article	IF	CITATIONS
235	Electronic structure with direct diagonalization on a D-wave quantum annealer. Scientific Reports, 2020, 10, 20753.	1.6	18
236	Methylammonium Lead Tribromide Single Crystal Detectors towards Robust Gammaâ€Ray Photon Sensing. Advanced Optical Materials, 2020, 8, 2000233.	3.6	18
237	Electronic-oscillator analysis of femtosecond four-wave mixing in conjugated polyenes. Physical Review B, 1997, 55, 4960-4977.	1.1	17
238	Semiclassical Scattering on Conical Intersections. Physical Review Letters, 2005, 95, 223001.	2.9	17
239	Exciton scattering approach for branched conjugated molecules and complexes. I. Formalism. Journal of Chemical Physics, 2008, 129, 174111.	1.2	17
240	Exciton scattering approach for branched conjugated molecules and complexes. III. Applications. Journal of Chemical Physics, 2008, 129, 174113.	1.2	17
241	Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics. Journal of Chemical Physics, 2014, 141, 184101.	1.2	17
242	Charge delocalization characteristics of regioregular high mobility polymers. Chemical Science, 2017, 8, 1146-1151.	3.7	17
243	Numerical tests of coherence-corrected surface hopping methods using a donor-bridge-acceptor model system. Journal of Chemical Physics, 2019, 150, 194104.	1.2	17
244	Intrinsic limits of defect-state photoluminescence dynamics in functionalized carbon nanotubes. Nanoscale, 2019, 11, 9125-9132.	2.8	17
245	Collective electronic oscillator/semiempirical calculations of static nonlinear polarizabilities in conjugated molecules. Journal of Chemical Physics, 2001, 115, 699-707.	1.2	16
246	Molecular-orbital-free algorithm for excited states in time-dependent perturbation theory. Journal of Chemical Physics, 2008, 129, 064114.	1.2	16
247	Synthesis and properties of a triphenylene–butadiynylenemacrocycle. Journal of Materials Chemistry, 2011, 21, 1404-1415.	6.7	16
248	Effect of Packing on Formation of Deep Carrier Traps in Amorphous Conjugated Polymers. Journal of Physical Chemistry Letters, 2013, 4, 1453-1459.	2.1	16
249	Vibrational states of nano-confined water molecules in beryl investigated by first-principles calculations and optical experiments. Physical Chemistry Chemical Physics, 2017, 19, 30740-30748.	1.3	16
250	Analytic model of electron transport through and over non-linear barriers. Journal of Applied Physics, 2020, 127, 235301.	1.1	16
251	Monitoring molecular vibronic coherences in a bichromophoric molecule by ultrafast X-ray spectroscopy. Chemical Science, 2021, 12, 5286-5294.	3.7	16
252	Computing molecular excited states on a D-Wave quantum annealer. Scientific Reports, 2021, 11, 18796.	1.6	16

#	Article	IF	Citations
253	Real-space analysis of electronic excitations in free-base (H2P) and magnesium (MgP) porphins. Chemical Physics Letters, 1998, 297, 357-364.	1.2	15
254	Vibrational spectroscopy of polyatomic materials: Semiempirical calculations of anharmonic couplings and infrared and Raman linewidths in naphthalene and PETN crystals. Physical Review B, 2007, 75, .	1.1	15
255	Fluorescence quenching in an organic donor-acceptor dyad: A first principles study. Journal of Chemical Physics, 2009, 131, 034310.	1.2	15
256	Position Isomerism on One and Two Photon Absorption in Multibranched Chromophores: A TDDFT Investigation. Journal of Chemical Theory and Computation, 2010, 6, 3410-3426.	2.3	15
257	Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling. Journal of Drug Delivery, 2011, 2011, 1-9.	2.5	15
258	Effect of <i>trans</i> àê•and <i>cis</i> à―someric defects on the localization of the charged excitations in leâ€conjugated organic polymers. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 935-942.	2.4	15
259	First-Principles Study of Fluorescence in Silver Nanoclusters. Journal of Physical Chemistry C, 2017, 121, 23875-23885.	1.5	15
260	Energy transfer and spatial scrambling of an exciton in a conjugated dendrimer. Physical Chemistry Chemical Physics, 2018, 20, 29648-29660.	1.3	15
261	Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks. Journal of Chemical Physics, 2019, 150, 124301.	1.2	15
262	An Ab Initio Multiple Cloning Method for Non-Adiabatic Excited-State Molecular Dynamics in NWChem. Journal of Chemical Theory and Computation, 2021, 17, 3629-3643.	2.3	15
263	Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes. ACS Nano, 2021, 15, 923-933.	7.3	15
264	Excited-State Properties of Defected Halide Perovskite Quantum Dots: Insights from Computation. Journal of Physical Chemistry Letters, 2021, 12, 1005-1011.	2.1	15
265	Let Digons be Bygones: The Fate of Excitons in Curved π-Systems. Journal of Physical Chemistry Letters, 2018, 9, 7123-7129.	2.1	14
266	Tuning Optical Properties of Conjugated Molecules by Lewis Acids: Insights from Electronic Structure Modeling. Journal of Physical Chemistry Letters, 2019, 10, 4632-4638.	2.1	14
267	Ground-State Geometry and Vibrations of Polyphenylenevinylene Oligomers. Journal of Physical Chemistry Letters, 2019, 10, 3232-3239.	2.1	14
268	Vibrational energy redistribution during donor–acceptor electronic energy transfer: criteria to identify subsets of active normal modes. Physical Chemistry Chemical Physics, 2020, 22, 18454-18466.	1.3	14
269	Hidden Fine Structure of Quantum Defects Revealed by Single Carbon Nanotube Magneto-Photoluminescence. ACS Nano, 2020, 14, 3451-3460.	7. 3	14
270	Predicting phosphorescence energies and inferring wavefunction localization with machine learning. Chemical Science, 2021, 12, 10207-10217.	3.7	14

#	Article	IF	CITATIONS
271	Structural Dynamics and Electronic Properties of Semiconductor Quantum Dots: Computational Insights. Chemistry of Materials, 2021, 33, 7848-7857.	3.2	14
272	On the existence of photoexcited breathers in conducting polymers. Physical Review B, 2004, 70, .	1.1	13
273	Exciton scattering approach for branched conjugated molecules and complexes. II. Extraction of the exciton scattering parameters from quantum-chemical calculations. Journal of Chemical Physics, 2008, 129, 174112.	1.2	13
274	Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo. Journal of Chemical Physics, 2015, 143, 014115.	1.2	13
275	Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states. Chemical Physics, 2016, 481, 84-90.	0.9	13
276	Photoactive Excited States in Explosive Fe(II) Tetrazine Complexes: A Time-Dependent Density Functional Theory Study. Journal of Physical Chemistry C, 2016, 120, 28762-28773.	1.5	13
277	Molecular dynamics and charge transport in organic semiconductors: a classical approach to modeling electron transfer. Chemical Science, 2017, 8, 2597-2609.	3.7	13
278	Cooperative enhancement of the nonlinear optical response in conjugated energetic materials: A TD-DFT study. Journal of Chemical Physics, 2017, 146, 114308.	1.2	13
279	Highly efficient photoelectric effect in halide perovskites for regenerative electron sources. Nature Communications, 2021, 12, 673.	5.8	13
280	Electronic screening in second order optical polarizabilities of elongated Donor/Acceptor polyenes. Chemical Physics, 1999, 245, 145-163.	0.9	12
281	Neutral radical molecules ordered in self-assembled monolayer systems for quantum information processing. Chemical Physics Letters, 2007, 436, 144-149.	1.2	12
282	Two photon absorption of extended substituted phenylenevinylene oligomers: A TDDFT study. Chemical Physics Letters, 2008, 450, 322-328.	1.2	12
283	Prediction of excitation energies for conjugated polymers using time-dependent density functional theory. Physical Review B, 2009, 80, .	1.1	12
284	The Frenkel exciton Hamiltonian for functionalized Ru(II)–bpy complexes. Journal of Luminescence, 2011, 131, 1739-1746.	1.5	12
285	Effective tight-binding models for excitons in branched conjugated molecules. Journal of Chemical Physics, 2013, 139, 064109.	1.2	12
286	Tunable Charge Transfer Dynamics at Tetracene/LiF/C ₆₀ Interfaces. Journal of Physical Chemistry C, 2015, 119, 1286-1290.	1.5	12
287	Phonon bottleneck and long-lived excited states in π-conjugated pyrene hoop. Physical Chemistry Chemical Physics, 2017, 19, 9478-9484.	1.3	12
288	Modification of Optical Properties and Excited-State Dynamics by Linearizing Cyclic Paraphenylene Chromophores. Journal of Physical Chemistry C, 2018, 122, 16639-16648.	1.5	12

#	Article	IF	Citations
289	Vibronic Quantum Beating between Electronic Excited States in a Heterodimer. Journal of Physical Chemistry B, 2020, 124, 3992-4001.	1.2	12
290	Microcrystal Electron Diffraction for Molecular Design of Functional Non-Fullerene Acceptor Structures. Chemistry of Materials, 2021, 33, 966-977.	3.2	12
291	Single-Layer Dititanium Oxide Ti ₂ 0 MOene: Multifunctional Promises for Electride, Anode Materials, and Superconductor. Journal of Physical Chemistry Letters, 2021, 12, 494-500.	2.1	12
292	Induced Chirality in Halide Perovskite Clusters through Surface Chemistry. Journal of Physical Chemistry Letters, 2022, 13, 686-693.	2.1	12
293	Exciton scattering approach for branched conjugated molecules and complexes. IV. Transition dipoles and optical spectra. Journal of Chemical Physics, 2010, 132, 124103.	1.2	11
294	Hot Carrier Cooling and Recombination Dynamics of Chlorine-Doped Hybrid Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2020, 11, 8430-8436.	2.1	11
295	Reduction of the molecular hamiltonian matrix using quantum community detection. Scientific Reports, 2021, 11, 4099.	1.6	11
296	Point Defects in Two-Dimensional Ruddlesden–Popper Perovskites Explored with Ab Initio Calculations. Journal of Physical Chemistry Letters, 2022, 13, 5213-5219.	2.1	11
297	Absorption Spectra of Blue-Light-Emitting Oligoquinolines from Time-Dependent Density Functional Theory. Journal of Physical Chemistry B, 2008, 112, 13701-13710.	1.2	10
298	Self-Trapping of Charge Carriers in Semiconducting Carbon Nanotubes: Structural Analysis. Journal of Physical Chemistry Letters, 2015, 6, 3873-3879.	2.1	10
299	NEXMD Modeling of Photoisomerization Dynamics of 4-Styrylquinoline. Journal of Physical Chemistry A, 2018, 122, 9403-9411.	1.1	10
300	Nonadiabatic Excited-State Molecular Dynamics for Open-Shell Systems. Journal of Chemical Theory and Computation, 2020, 16, 2053-2064.	2.3	10
301	Interplay between Electrostatic Properties of Molecular Adducts and Their Positions at Carbon Nanotubes. Journal of Physical Chemistry C, 2021, 125, 4785-4793.	1.5	10
302	Coupling between Emissive Defects on Carbon Nanotubes: Modeling Insights. Journal of Physical Chemistry Letters, 2021, 12, 7846-7853.	2.1	10
303	Nature of electronic excitations in small non-stoichiometric quantum dots. Journal of Materials Chemistry A, 2022, 10, 5212-5220.	5.2	10
304	Frenkel biexcitons in hybrid HJ photophysical aggregates. Science Advances, 2021, 7, eabi5197.	4.7	10
305	Excited States of Donor and Acceptor Substituted Conjugated Oligomers: A Perspective from the Exciton Scattering Approach. Journal of Physical Chemistry Letters, 2010, 1, 3396-3400.	2.1	9
306	Exciton Scattering on Symmetric Branching Centers in Conjugated Molecules. Journal of Physical Chemistry B, 2011, 115, 5465-5475.	1.2	9

#	Article	IF	CITATIONS
307	Simulations of fluorescence solvatochromism in substituted PPV oligomers from excited state molecular dynamics with implicit solvent. Chemical Physics Letters, 2015, 631-632, 66-69.	1.2	9
308	Design principles from multiscale simulations to predict nanostructure in self-assembling ionic liquids. Faraday Discussions, 2018, 206, 159-181.	1.6	9
309	Dipolar and charged localized excitons in carbon nanotubes. Physical Review B, 2018, 98, .	1.1	9
310	Enhanced Emission from Bright Excitons in Asymmetrically Strained Colloidal CdSe/Cd _{<i>x</i>} Zn _{1â€"<i>x</i>} Se Quantum Dots. ACS Nano, 2021, 15, 14444-14452.	7.3	9
311	Nonadiabatic molecular dynamics analysis of hybrid Dion–Jacobson 2D leads iodide perovskites. Applied Physics Letters, 2021, 119, .	1.5	9
312	Synthesis, electrochemistry, STM investigation of oligothiophene self-assemblies with superior structural order and electronic properties. Chemical Physics, 2016, 481, 191-197.	0.9	8
313	Extended Lagrangian Excited State Molecular Dynamics. Journal of Chemical Theory and Computation, 2018, 14, 799-806.	2.3	8
314	Site-Specific Photodecomposition in Conjugated Energetic Materials. Journal of Physical Chemistry A, 2018, 122, 6055-6061.	1.1	8
315	Electronic Energy Relaxation in a Photoexcited Fully Fused Edge-Sharing Carbon Nanobelt. Journal of Physical Chemistry Letters, 2020, 11, 4711-4719.	2.1	8
316	Experimental and theoretical study of energy transfer in a chromophore triad: What makes modeling dynamics successful?. Journal of Chemical Physics, 2020, 153, 244114.	1.2	8
317	Photoexcitation dynamics in perylene diimide dimers. Journal of Chemical Physics, 2020, 153, 244117.	1.2	8
318	Two Dimensional MOene: From Superconductors to Direct Semiconductors and Weyl Fermions. Nano Letters, 2022, 22, 5592-5599.	4.5	8
319	How Geometric Distortions Scatter Electronic Excitations in Conjugated Macromolecules. Journal of Physical Chemistry Letters, 2014, 5, 3946-3952.	2.1	7
320	Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states. Journal of Chemical Physics, 2016, 144, 154104.	1.2	7
321	Through space and through bridge channels of charge transfer at p-n nano-junctions: A DFT study. Chemical Physics, 2016, 481, 144-156.	0.9	7
322	Modification of optoelectronic properties of conjugated oligomers due to donor/acceptor functionalization: DFT study. Chemical Physics, 2016, 481, 133-143.	0.9	7
323	Photoinduced Dynamics with Constrained Vibrational Motion: FrozeNM Algorithm. Journal of Chemical Theory and Computation, 2020, 16, 7289-7298.	2.3	7
324	<i>Ex Machina</i> Determination of Structural Correlation Functions. Journal of Physical Chemistry Letters, 2020, 11, 4372-4378.	2.1	7

#	Article	IF	CITATIONS
325	Cesium-Coated Halide Perovskites as a Photocathode Material: Modeling Insights. Journal of Physical Chemistry Letters, 2021, 12, 6269-6276.	2.1	7
326	Control of Polaronic Behavior and Carrier Lifetimes via Metal and Anion Alloying in Chalcogenide Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 4955-4962.	2.1	7
327	Geometry Relaxation of Photoexcited States in Conjugated Molecules. Phase Transitions, 2002, 75, 725-732.	0.6	6
328	Observation of breather excitons and soliton in a substituted polythiophene with a degenerate ground state. Physical Review B, 2010, 81, .	1.1	6
329	Excited-State Structure Modifications Due to Molecular Substituents and Exciton Scattering in Conjugated Molecules. Journal of Physical Chemistry Letters, 2014, 5, 641-647.	2.1	6
330	An extended moments model of quantum efficiency for metals and semiconductors. Journal of Applied Physics, 2020, 128, .	1.1	6
331	Plasmon-Enhanced Exciton Delocalization in Squaraine-Type Molecular Aggregates. ACS Nano, 2022, 16, 4693-4704.	7.3	6
332	Impact of Composition Engineering on Charge Carrier Cooling in Hybrid Perovskites: Computational Insights. Journal of Materials Chemistry C, 0, , .	2.7	6
333	Optical Absorptions of New Blue-Light Emitting Oligoquinolines Bearing Pyrenyl and Triphenyl Endgroups Investigated with Time-Dependent Density Functional Theory. Journal of Chemical Theory and Computation, 2009, 5, 866-872.	2.3	5
334	Communication: Nanoscale electrostatic theory of epistructural fields at the protein-water interface. Journal of Chemical Physics, 2012, 137, 231101.	1.2	5
335	Natural Atomic Orbital Representation for Optical Spectra Calculations in the Exciton Scattering Approach. Journal of Physical Chemistry Letters, 2012, 3, 3734-3739.	2.1	5
336	Dynamics of charge at water-to-semiconductor interface: Case study of wet [0 0 1] anatase TiO2 nanowire. Chemical Physics, 2016, 481, 184-190.	0.9	5
337	Multi-exciton emission from solitary dopant states of carbon nanotubes. Nanoscale, 2017, 9, 16143-16148.	2.8	5
338	The crucial role of a spacer material on the efficiency of charge transfer processes in organic donor–acceptor junction solar cells. Nanoscale, 2018, 10, 451-459.	2.8	5
339	Correlation of Spatiotemporal Dynamics of Polarization and Charge Transport in Blended Hybrid Organic–Inorganic Perovskites on Macro- and Nanoscales. ACS Applied Materials & Interfaces, 2020, 12, 15380-15388.	4.0	5
340	Nonadiabatic Molecular Dynamics Study of the Relaxation Pathways of Photoexcited Cyclooctatetraene. Journal of Physical Chemistry Letters, 2021, 12, 5716-5722.	2.1	5
341	Photoinduced Energy Transfer in Linear Guest–Host Chromophores: A Computational Study. Journal of Physical Chemistry A, 2021, 125, 5303-5313.	1.1	5
342	Sampling electronic structure quadratic unconstrained binary optimization problems (QUBOs) with Ocean and Mukai solvers. PLoS ONE, 2022, 17, e0263849.	1,1	5

#	Article	IF	CITATIONS
343	Ultrafast coherent photoexcited dynamics in a trimeric dendrimer probed by X-ray stimulated-Raman signals. Chemical Science, 2022, 13, 6373-6384.	3.7	5
344	Impact of Graphene Quantum Dot Edge Morphologies on Their Optical Properties. Journal of Physical Chemistry Letters, 2022, 13, 5801-5807.	2.1	5
345	Three-pulse photon-echo spectroscopy as a probe of the photoexcited electronic state manifold in coupled electron-phonon systems. Physical Review B, 2004, 70, .	1.1	4
346	Two-photon transitions in triazole based quadrupolar and octupolar chromophores: a TD-DFT investigation. , 2010, , .		4
347	Photoexcited energy relaxation and vibronic couplings in π-conjugated carbon nanorings. Physical Chemistry Chemical Physics, 2020, 22, 15321-15332.	1.3	4
348	Prediction of Excitation Energies for Conjugated Oligomers and Polymers from Time-Dependent Density Functional Theory. Materials, 2010, 3, 3430-3467.	1.3	3
349	Passivating Nucleobases Bring Charge Transfer Character to Optically Active Transitions in Small Silver Nanoclusters. Journal of Physical Chemistry A, 2020, 124, 8931-8942.	1.1	3
350	Exciton Spatial Dynamics and Self-Trapping in Carbon Nanocages. Journal of Physical Chemistry Letters, 2021, 12, 224-231.	2.1	3
351	Hot Carrier Dynamics at Ligated Silicon(111) Surfaces: A Computational Study. Journal of Physical Chemistry Letters, 2021, 12, 7504-7511.	2.1	3
352	Branching of dipolar chromophores: effects on linear and nonlinear optical properties. , 2005, , .		2
353	Dynamical variational approach to non-adiabatic electronic structure. Chemical Physics, 2008, 347, 25-38.	0.9	2
354	Observation of breather and soliton in a substituted polythiophene with a degenerate ground state. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 74-79.	0.8	2
355	Counting the number of excited states in organic semiconductor systems using topology. Journal of Chemical Physics, 2015, 142, 084113.	1.2	2
356	Atomistic Simulations of Plasmon Mediated Photochemistry. ACS Symposium Series, 2019, , 239-256.	0.5	2
357	Excitation Energy Transfer between bodipy Dyes in a Symmetric Molecular Excitonic Seesaw. Journal of Physical Chemistry A, 2021, 125, 8404-8416.	1.1	2
358	LOCALIZED AND DELOCALIZED ELECTRONIC EXCITATIONS IN BIOLOGICAL AND ARTIFICIAL ANTENNA COMPLEXES. , 2000, , .		2
359	Toward a QUBO-Based Density Matrix Electronic Structure Method. Journal of Chemical Theory and Computation, 2022, 18, 4177-4185.	2.3	2
360	Excited electronic states of carotenoids: Timeâ€dependent densityâ€matrixâ€response algorithm. International Journal of Quantum Chemistry, 1998, 70, 711-727.	1.0	1

#	Article	IF	CITATIONS
361	Solvent effects and charge transfer states in organic photovoltaics: a time-dependent density functional theory study on the PCPDTBT:PCBM low band gap system. Journal of Photonics for Energy, 2018, 8, 1.	0.8	1
362	Back-and-Forth Energy Transfer during Electronic Relaxation in a Chlorin–Perylene Dyad. Journal of Physical Chemistry Letters, 2021, 12, 10394-10401.	2.1	1
363	Vibronic Photoexcitation Dynamics of Perylene Diimide: Computational Insights. Journal of Physical Chemistry A, 2022, 126, 733-741.	1.1	1
364	Localized Optical Excitations and Two-Exciton Spectroscopy of Phenylacetylene Dendrimers. Materials Research Society Symposia Proceedings, 1998, 543, 327.	0.1	0
365	Origin, scaling, and saturation of nonlinear polarizabilities in donor/acceptor polymers. , 0, , .		0
366	Ultrafast dynamics in pentacene and tetracene probed using optical pump-probe spectroscopy. , 2004, , ITuL3.		0
367	Real time observation of non-linear coherent phonon dynamics in semiconducting single wall carbon nanotubes. , 2006, , .		0
368	Modeling of Non-Adiabatic Photoinduced Dynamics and Energy Transfer in Conjugated Molecules. , 2010, , .		0
369	Resonant Raman Spectroscopy of Chirality-Enriched Semiconducting Single Walled Carbon Nanotubes. , 2010, , .		0
370	Tribute to Shaul Mukamel. Journal of Physical Chemistry B, 2011, 115, 5037-5038.	1.2	0
371	Semiconductors: Interface Design Principles for High-Performance Organic Semiconductor Devices (Adv. Sci. 6/2015). Advanced Science, 2015, 2, .	5 . 6	0
372	Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules. Chemical Physics, 2016, 481, 124-132.	0.9	0
373	Microcrystal Electron Diffraction for Molecular Design of Functional Non-Fullerene Acceptor Structures. , 0, , .		0
374	(Invited) Theoretical Insights into New Strategies of Carbon Nanotube Functionalization. ECS Meeting Abstracts, 2021, MA2021-01, 575-575.	0.0	0
375	Origin, Scaling, and Saturation of Nonlinear Polarizabilities in Donor/Acceptor Polymers., 2000,,.		0
376	Nonlinear Optical Response and Photodynamics of Conjugated Molecules. , 2006, , 1266-1269.		0
377	Plasmonic Hot-Carrier-Mediated Solar Energy Conversion and Tunablephotochemical Reactions. ECS Meeting Abstracts, 2019, , .	0.0	0
378	(Invited) Modeling Insights into Optical Properties of Functionalized Carbon Nanotubes. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
379	Solution-processed 2D layered perovksites for high-sensitivity X-ray detector. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a224-a224.	0.0	O
380	(Invited) Controlling Defect-State Emission in Covalently Functionalized Single-Walled Carbon Nanotubes: A Theoretical Perspective. ECS Meeting Abstracts, 2020, MA2020-01, 692-692.	0.0	0
381	Ultrafast nonadiabatic dynamics through an intermolecular conical intersection. , 2020, , .		O
382	(Invited) Theoretical Insight into New Strategies of Carbon Nanotube Functionalization. ECS Meeting Abstracts, 2022, MA2022-01, 738-738.	0.0	0