Anne Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2616255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions. PLoS Genetics, 2012, 8, e1002784.	3.5	578
2	CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	514
3	2R,3R-Butanediol, a Bacterial Volatile Produced by <i>Pseudomonas chlororaphis</i> O6, Is Involved in Induction of Systemic Tolerance to Drought in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2008, 21, 1067-1075.	2.6	367
4	Silver Nanoparticles Disrupt Wheat (<i>Triticum aestivum</i> L.) Growth in a Sand Matrix. Environmental Science & Technology, 2013, 47, 1082-1090.	10.0	299
5	Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. Journal of Biological Engineering, 2009, 3, 9.	4.7	252
6	Fate of CuO and ZnO Nano- and Microparticles in the Plant Environment. Environmental Science & Technology, 2013, 47, 4734-4742.	10.0	246
7	GacS-Dependent Production of 2R, 3R-Butanediol by Pseudomonas chlororaphis O6 Is a Major Determinant for Eliciting Systemic Resistance Against Erwinia carotovora but not Against Pseudomonas syringae pv. tabaci in Tobacco. Molecular Plant-Microbe Interactions, 2006, 19, 924-930.	2.6	206
8	Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMetals, 2013, 26, 913-924.	4.1	192
9	Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide. Journal of Bacteriology, 1995, 177, 6536-6544.	2.2	163
10	Influence of root colonizing bacteria on the defense responses of bean. Plant and Soil, 1992, 140, 99-107.	3.7	150
11	Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environmental Pollution, 2011, 159, 1749-1756.	7.5	144
12	Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology, 2015, 24, 119-129.	2.4	144
13	The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. BioMetals, 2015, 28, 101-112.	4.1	134
14	Isolation and Characterization of Polycyclic Aromatic Hydrocarbon?Degrading Mycobacterium Isolates from Soil. Microbial Ecology, 2004, 48, 230-238.	2.8	121
15	Study of Biochemical Pathways and Enzymes Involved in Pyrene Degradation by Mycobacterium sp. Strain KMS. Applied and Environmental Microbiology, 2006, 72, 7821-7828.	3.1	108
16	Regulation of arbuscule formation by carbon in the plant. Plant Journal, 1998, 16, 523-530.	5.7	100
17	Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. Journal of Hazardous Materials, 2011, 188, 428-435.	12.4	100
18	Production of Indole-3-Acetic Acid via the Indole-3-Acetamide Pathway in the Plant-Beneficial Bacterium Pseudomonas chlororaphis O6 Is Inhibited by ZnO Nanoparticles but Enhanced by CuO Nanoparticles. Applied and Environmental Microbiology, 2012, 78, 1404-1410.	3.1	98

#	Article	IF	CITATIONS
19	Molecular Studies on the Role of a Root Surface Agglutinin in Adherence and Colonization by <i>Pseudomonas putida</i> . Applied and Environmental Microbiology, 1988, 54, 375-380.	3.1	97
20	Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiology and Biochemistry, 2017, 110, 108-117.	5.8	94
21	Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Science of the Total Environment, 2012, 429, 215-222.	8.0	86
22	Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiological and Molecular Plant Pathology, 2003, 63, 27-34.	2.5	82
23	Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Letters in Applied Microbiology, 2011, 52, 532-537.	2.2	79
24	Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology, 2015, 24, 1305-1314.	2.4	75
25	Bioactivity and Biomodification of Ag, ZnO, and CuO Nanoparticles with Relevance to Plant Performance in Agriculture. Industrial Biotechnology, 2012, 8, 344-357.	0.8	74
26	ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (<i>Phaseolus vulgaris</i>). Nanotoxicology, 2015, 9, 271-278.	3.0	74
27	Production of Indole-3-Acetic Acid in the Plant-Beneficial Strain Pseudomonas chlororaphis O6 Is Negatively Regulated by the Global Sensor Kinase GacS. Current Microbiology, 2006, 52, 473-476.	2.2	72
28	CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, <i>Pseudomonas chlororaphis</i> O6. Nanotoxicology, 2012, 6, 635-642.	3.0	69
29	Remodeling of root morphology by CuO and ZnO nanoparticles: effects on drought tolerance for plants colonized by a beneficial pseudomonad. Botany, 2018, 96, 175-186.	1.0	63
30	Copper and cadmium: responses in <i>Pseudomonas putida</i> KT2440. Letters in Applied Microbiology, 2009, 49, 775-783.	2.2	62
31	A Review of Metal and Metal-Oxide Nanoparticle Coating Technologies to Inhibit Agglomeration and Increase Bioactivity for Agricultural Applications. Agronomy, 2020, 10, 1018.	3.0	62
32	CuO and ZnO Nanoparticles Modify Interkingdom Cell Signaling Processes Relevant to Crop Production. Journal of Agricultural and Food Chemistry, 2018, 66, 6513-6524.	5.2	60
33	Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Protection, 2018, 105, 62-69.	2.1	56
34	Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: Influences on copper bioavailability and uptake. Environmental Toxicology and Chemistry, 2018, 37, 2619-2632.	4.3	54
35	Genetic Analysis of theaggALocus Involved in Agglutination and Adherence ofPseudomonas putida,a Beneficial Fluorescent Pseudomonad. Molecular Plant-Microbe Interactions, 1992, 5, 154.	2.6	54
36	Rhizosphere pseudomonads as probiotics improving plant health. Molecular Plant Pathology, 2018, 19, 2349-2359.	4.2	53

#	Article	IF	CITATIONS
37	Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates: their association with plant roots. Applied Microbiology and Biotechnology, 2007, 75, 655-663.	3.6	50
38	Nanospecific Inhibition of Pyoverdine Siderophore Production in <i>Pseudomonas chlororaphis</i> O6 by CuO Nanoparticles. Chemical Research in Toxicology, 2012, 25, 1066-1074.	3.3	50
39	Superoxide Dismutase Activity in Pseudomonas putida Affects Utilization of Sugars and Growth on Root Surfaces. Applied and Environmental Microbiology, 2000, 66, 1460-1467.	3.1	46
40	Catalase and Superoxide Dismutase of Root-Colonizing Saprophytic Fluorescent Pseudomonads. Applied and Environmental Microbiology, 1990, 56, 3576-3582.	3.1	46
41	Pyrene Mineralization by Mycobacterium sp. Strain KMS in a Barley Rhizosphere. Journal of Environmental Quality, 2007, 36, 1260-1265.	2.0	45
42	Hydrogen Cyanide Produced by Pseudomonas chlororaphis O6 Exhibits Nematicidal Activity against Meloidogyne hapla. Plant Pathology Journal, 2018, 34, 35-43.	1.7	41
43	Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. Molecular Plant Pathology, 2006, 7, 463-472.	4.2	39
44	Nitric Oxide and Hydrogen Peroxide Production are Involved in Systemic Drought Tolerance Induced by 2R,3R-Butanediol in Arabidopsis thaliana. Plant Pathology Journal, 2013, 29, 427-434.	1.7	39
45	Components from wheat roots modify the bioactivity of ZnO and CuO nanoparticles in a soil bacterium. Environmental Pollution, 2014, 187, 65-72.	7.5	36
46	Catalase Activities of Phanerochaete chrysosporium Are Not Coordinately Produced with Ligninolytic Metabolism: Catalases from a White-Rot Fungus. Current Microbiology, 2001, 42, 8-11.	2.2	33
47	Tobacco cultivars vary in induction of systemic resistance against Cucumber mosaic virus and growth promotion by Pseudomonas chlororaphis O6 and its gacS mutant. European Journal of Plant Pathology, 2007, 119, 383-390.	1.7	33
48	Salts affect the interaction of ZnO or CuO nanoparticles with wheat. Environmental Toxicology and Chemistry, 2015, 34, 2116-2125.	4.3	33
49	The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene, 2004, 325, 137-143.	2.2	31
50	Soil chemistry influences the phytotoxicity of metal oxide nanoparticles. International Journal of Nanotechnology, 2017, 14, 15.	0.2	31
51	Increased emergence of spring wheat after inoculation with Pseudomonas chlororaphis isolate 2E3 under field and laboratory conditions. Biology and Fertility of Soils, 1996, 23, 200-206.	4.3	30
52	Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, gacS. Journal of Microbiology and Biotechnology, 2007, 17, 586-93.	2.1	30
53	A Root-Colonizing Pseudomonad Lessens Stress Responses in Wheat Imposed by CuO Nanoparticles. PLoS ONE, 2016, 11, e0164635.	2.5	27
54	Polyamine is a critical determinant of <i>Pseudomonas chlororaphis</i> O6 for GacSâ€dependent bacterial cell growth and biocontrol capacity. Molecular Plant Pathology, 2018, 19, 1257-1266.	4.2	27

#	Article	IF	CITATIONS
55	Biological Control Potential of Bacillus amyloliquefaciens KB3 Isolated from the Feces of Allomyrina dichotoma Larvae. Plant Pathology Journal, 2016, 32, 273-280.	1.7	27
56	Toxicity of fungal-generated silver nanoparticles to soil-inhabiting Pseudomonas putida KT2440, a rhizospheric bacterium responsible for plant protection and bioremediation. Journal of Hazardous Materials, 2015, 286, 48-54.	12.4	26
57	Effect of complexing ligands on the surface adsorption, internalization, and bioresponse of copper and cadmium in a soil bacterium, Pseudomonas putida. Chemosphere, 2013, 91, 374-382.	8.2	24
58	Differences Between Lipopolysaccharide Compositions of Plant Pathogenic and Saprophytic Pseudomonas Species. Applied and Environmental Microbiology, 1984, 48, 31-35.	3.1	24
59	Two isolates ofFusarium proliferatumfrom different habitats and global locations have similar abilities to degrade lignin. FEMS Microbiology Letters, 2005, 249, 149-155.	1.8	21
60	Does doping with aluminum alter the effects of ZnO nanoparticles on the metabolism of soil pseudomonads?. Microbiological Research, 2013, 168, 91-98.	5.3	21
61	Interactions Between a Plant Probiotic and Nanoparticles on Plant Responses Related to Drought Tolerance. Industrial Biotechnology, 2018, 14, 148-156.	0.8	20
62	Insights into plant-beneficial traits of probiotic Pseudomonas chlororaphis isolates. Journal of Medical Microbiology, 2020, 69, 361-371.	1.8	19
63	The GacS-regulated sigma factor RpoS governs production of several factors involved in biocontrol activity of the rhizobacterium <i>Pseudomonas chlororaphis</i> O6. Canadian Journal of Microbiology, 2013, 59, 556-562.	1.7	18
64	Copper oxide nanoparticle dissolution at alkaline pH is controlled by dissolved organic matter: influence of soil-derived organic matter, wheat, bacteria, and nanoparticle coating. Environmental Science: Nano, 2020, 7, 2618-2631.	4.3	18
65	Pluronics' influence on pseudomonad biofilm and phenazine production. FEMS Microbiology Letters, 2009, 293, 148-153.	1.8	17
66	The RpoS Sigma Factor Negatively Regulates Production of IAA and Siderophore in a Biocontrol Rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathology Journal, 2013, 29, 323-329.	1.7	16
67	ThedctAgene ofPseudomonas chlororaphisO6 is under RpoN control and is required for effective root colonization and induction of systemic resistance. FEMS Microbiology Letters, 2006, 256, 98-104.	1.8	15
68	An instrument design for non-contact detection of biomolecules and minerals on Mars using fluorescence. Journal of Biological Engineering, 2014, 8, 16.	4.7	14
69	Biocontrol Efficacy of Formulated Pseudomonas chlororaphis O6 against Plant Diseases and Root-Knot Nematodes. Plant Pathology Journal, 2018, 34, 241-249.	1.7	14
70	Soil-derived fulvic acid and root exudates, modified by soil bacteria, alter CuO nanoparticle-induced root stunting of wheat <i>via</i> Cu complexation. Environmental Science: Nano, 2019, 6, 3638-3652.	4.3	14
71	Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathology Journal, 2014, 30, 220-227.	1.7	14
72	The Sensor Kinase GacS Negatively Regulates Flagellar Formation and Motility in a Biocontrol Bacterium, Pseudomonas chlororaphis O6. Plant Pathology Journal, 2014, 30, 215-219.	1.7	14

#	Article	IF	CITATIONS
73	Catalase activity and the survival of Pseudomonas putida, a root colonizer, upon treatment with peracetic acid. Canadian Journal of Microbiology, 2001, 47, 222-228.	1.7	13
74	Polycyclic aromatic hydrocarbon degrading gene islands in five pyrene-degrading Mycobacterium isolates from different geographic locations. Canadian Journal of Microbiology, 2012, 58, 102-111.	1.7	13
75	Biofilms Benefiting Plants Exposed to ZnO and CuO Nanoparticles Studied with a Root-Mimetic Hollow Fiber Membrane. Journal of Agricultural and Food Chemistry, 2018, 66, 6619-6627.	5.2	13
76	Both Solar UVA and UVB Radiation Impair Conidial Culturability and Delay Germination in the Entomopathogenic Fungus Metarhizium anisopliae¶. Photochemistry and Photobiology, 2001, 74, 734-739.	2.5	12
77	The global regulator GacS regulates biofilm formation in <i>Pseudomonas chlororaphis</i> O6 differently with carbon source. Canadian Journal of Microbiology, 2014, 60, 133-138.	1.7	12
78	Sublethal doses of ZnO nanoparticles remodel production of cell signaling metabolites in the root colonizer Pseudomonas chlororaphis O6. Environmental Science: Nano, 2016, 3, 1103-1113.	4.3	12
79	The Gac/Rsm Signaling Pathway of a Biocontrol Bacterium, Pseudomonas chlororaphis O6. Research in Plant Disease, 2017, 23, 212-227.	0.8	12
80	Hydrogen cyanide produced by <i>Pseudomonas chlororaphis</i> O6 is a key aphicidal metabolite. Canadian Journal of Microbiology, 2019, 65, 185-190.	1.7	11
81	Abiotic stressors impact outer membrane vesicle composition in a beneficial rhizobacterium: Raman spectroscopy characterization. Scientific Reports, 2020, 10, 21289.	3.3	11
82	Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis. BioMetals, 2016, 29, 211-223.	4.1	10
83	Activation of Defense Pathways: Synergism between Reactive Oxygen Species and Salicylic Acid and Consideration of Field Applicability. European Journal of Plant Pathology, 2004, 110, 203-212.	1.7	9
84	Mutation in the edd gene encoding the 6-phosphogluconate dehydratase of Pseudomonas chlororaphis O6 impairs root colonization and is correlated with reduced induction of systemic resistance. Letters in Applied Microbiology, 2007, 44, 56-61.	2.2	9
85	Multiplicity of genes for aromatic ring-hydroxylating dioxygenases in Mycobacterium isolate KMS and their regulation. Biodegradation, 2012, 23, 585-596.	3.0	9
86	Absence of Nanoparticle-Induced Drought Tolerance in Nutrient Sufficient Wheat Seedlings. Environmental Science & Technology, 2021, 55, 13541-13550.	10.0	9
87	The Plant-Stress Metabolites, Hexanoic Aacid and Melatonin, Are Potential "Vaccines―for Plant Health Promotion. Plant Pathology Journal, 2021, 37, 415-427.	1.7	7
88	Extracellular Polymeric Substances of Pseudomonas chlororaphis O6 Induce Systemic Drought Tolerance in Plants. Research in Plant Disease, 2018, 24, 242-247.	0.8	7
89	Root-Associated Bacteria Are Biocontrol Agents for Multiple Plant Pests. Microorganisms, 2022, 10, 1053.	3.6	7
90	Effects of UVB Irradiance on Conidia and Germinants of the Entomopathogenic Hyphomycete Metarhizium anisopliae: A Study of Reciprocity and Recovery¶. Photochemistry and Photobiology, 2001, 73, 140-146.	2.5	6

#	Article	IF	CITATIONS
91	Utilization of pyrene and benzoate in <i>Mycobacterium</i> isolate KMS is regulated differentially by catabolic repression. Journal of Basic Microbiology, 2013, 53, 81-92.	3.3	6
92	Catalase activity and the survival of <i>Pseudomonas putida</i> , a root colonizer, upon treatment with peracetic acid. Canadian Journal of Microbiology, 2001, 47, 222-228.	1.7	5
93	The Gluconeogenic Pathway in a Soil Mycobacterium Isolate with Bioremediation Ability. Current Microbiology, 2013, 66, 122-131.	2.2	4
94	Induced resistance against a bacterial disease by orysastrobin, a chemical fungicide. European Journal of Plant Pathology, 0, , 1.	1.7	4
95	Induction of tolerance to root-knot nematode by oxycom. Journal of Nematology, 2003, 35, 306-13.	0.9	4
96	Increased emergence of spring wheat after inoculation with Pseudomonas chlororaphis isolate 2E3 under field and laboratory conditions. Biology and Fertility of Soils, 1996, 23, 200-206.	4.3	3
97	The Power of Being Small: Nanosized Products for Agriculture. Research in Plant Disease, 2018, 24, 99-112.	0.8	3
98	Pluronic F68-capped SiO2 nanoparticles are compatible as delivery vehicles to roots and shoots. MRS Advances, 2022, 7, 327.	0.9	1
99	Proteomic Analysis of the CacA Response Regulator in Pseudomonas chlororaphis O6. Research in Plant Disease, 2018, 24, 162-169.	0.8	0

100 Integration of Bacterial Volatile Organic Compounds with Plant Health. , 2020, , 201-213.