
Dmytro Nykypanchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2615301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA-guided crystallization of colloidal nanoparticles. Nature, 2008, 451, 549-552.	27.8	1,420
2	Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nature Nanotechnology, 2010, 5, 116-120.	31.5	268
3	Stepwise surface encoding for high-throughput assembly of nanoclusters. Nature Materials, 2009, 8, 388-391.	27.5	253
4	Shapeshifting: Reversible Shape Memory in Semicrystalline Elastomers. Macromolecules, 2014, 47, 1768-1776.	4.8	171
5	Structural Basis for Metallic-Like Conductivity in Microbial Nanowires. MBio, 2015, 6, e00084.	4.1	171
6	Brownian Motion of DNA Confined Within a Two-Dimensional Array. Science, 2002, 297, 987-990.	12.6	144
7	A Simple Method for Kinetic Control of DNA-Induced Nanoparticle Assembly. Journal of the American Chemical Society, 2006, 128, 14020-14021.	13.7	106
8	Stimuliâ€Responsive Materials with Selfâ€Healing Antifouling Surface via 3D Polymer Grafting. Advanced Functional Materials, 2013, 23, 4593-4600.	14.9	96
9	DNAâ€Regulated Micro―and Nanoparticle Assembly. Small, 2007, 3, 1678-1682.	10.0	83
10	Nitrogen-Doping Induced Self-Assembly of Graphene Nanoribbon-Based Two-Dimensional and Three-Dimensional Metamaterials. Nano Letters, 2015, 15, 5770-5777.	9.1	80
11	Two-Dimensional DNA-Programmable Assembly of Nanoparticles at Liquid Interfaces. Journal of the American Chemical Society, 2014, 136, 8323-8332.	13.7	73
12	Linear Mesostructures in DNA–Nanorod Self-Assembly. ACS Nano, 2013, 7, 5437-5445.	14.6	72
13	DNA-Based Approach for Interparticle Interaction Control. Langmuir, 2007, 23, 6305-6314.	3.5	61
14	Tunable Nanoparticle Arrays at Charged Interfaces. ACS Nano, 2014, 8, 9857-9866.	14.6	61
15	Advancing Reversible Shape Memory by Tuning the Polymer Network Architecture. Macromolecules, 2016, 49, 1383-1391.	4.8	55
16	One-Shot Synthesis and Melt Self-Assembly of Bottlebrush Copolymers with a Gradient Compositional Profile. ACS Macro Letters, 2018, 7, 619-623.	4.8	41
17	Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks. Macromolecules, 2017, 50, 2103-2111.	4.8	38
18	Valence-programmable nanoparticle architectures. Nature Communications, 2020, 11, 2279.	12.8	37

Ομυτρο Νυκυρανομικ

#	Article	IF	CITATIONS
19	Stratification during evaporative assembly of multicomponent nanoparticle films. Journal of Colloid and Interface Science, 2018, 515, 70-77.	9.4	36
20	Super-compressible DNA nanoparticle lattices. Soft Matter, 2013, 9, 10452.	2.7	29
21	Morphological Behavior of Compositionally Gradient Polystyrene–Polylactide Bottlebrush Copolymers. Macromolecules, 2019, 52, 8217-8226.	4.8	27
22	X-ray Scattering and Coarse-Grained Simulations for Clustering and Interactions of Monoclonal Antibodies at High Concentrations. Journal of Physical Chemistry B, 2019, 123, 5274-5290.	2.6	27
23	Designed and biologically active protein lattices. Nature Communications, 2021, 12, 3702.	12.8	25
24	Highly efficient solid state catalysis by reconstructed (001) Ceria surface. Scientific Reports, 2014, 4, 4627.	3.3	24
25	Mesoporous Polymer Frameworks from End-Reactive Bottlebrush Copolymers. ACS Nano, 2017, 11, 8207-8214.	14.6	21
26	Shape Memory Alloy Bimorph Microactuators by Lift-Off Process. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.7	19
27	Single Molecule Visualizations of Polymer Partitioning within Model Pore Geometries. Macromolecules, 2005, 38, 145-150.	4.8	18
28	Controlling the 3-D morphology of Ni–Fe-based nanocatalysts for the oxygen evolution reaction. Nanoscale, 2019, 11, 8170-8184.	5.6	18
29	Hydrophobic Molecule Monolayer Brush-Tethered Zinc Anodes for Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2021, 13, 60092-60098.	8.0	18
30	Phase Behavior of Alkyne-Functionalized Styrenic Block Copolymer/Cobalt Carbonyl Adducts and <i>in Situ</i> Formation of Magnetic Nanoparticles by Thermolysis. Macromolecules, 2016, 49, 853-865.	4.8	14
31	Plasmonic response of DNA-assembled gold nanorods: Effect of DNA linker length, temperature and linker/nanoparticles ratio. Journal of Colloid and Interface Science, 2014, 433, 34-42.	9.4	13
32	Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects. Nanoscale, 2016, 8, 5873-5883.	5.6	11
33	Temperatureâ€dependent structure and compressive mechanical behavior of alginate/polyethylene oxide–poly(propylene oxide)–poly(ethylene oxide) hydrogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 834-844.	3.4	11
34	Compact Peptoid Molecular Brushes for Nanoparticle Stabilization. Journal of the American Chemical Society, 2022, 144, 8138-8152.	13.7	11
35	Improving the Responsivity of Hybrid Graphene–Conductive Polymer Photodetectors via Nanowire Self-Assembly. ACS Photonics, 2018, 5, 4296-4302.	6.6	10
36	Synthesis and Characterization of Ultrathin FeTe ₂ Nanocrystals. ACS Omega, 2021, 6, 10537-10546.	3.5	9

DMYTRO NYKYPANCHUK

#	Article	IF	CITATIONS
37	Long Range Selfâ€Assembly of Polythiophene Breath Figures: Optical and Morphological Characterization. Advanced Functional Materials, 2015, 25, 5902-5909.	14.9	8
38	Polyethylene Glycol Crowder's Effect on Enzyme Aggregation, Thermal Stability, and Residual Catalytic Activity. Langmuir, 2021, 37, 8474-8485.	3.5	8
39	<i>In Situ</i> Tracking of Nonthermal Plasma Etching of ZIF-8 Films. ACS Applied Materials & Interfaces, 2022, 14, 19023-19030.	8.0	7
40	Onset of interfacial waves in the terahertz spectrum of a nanoparticle suspension. Physical Review E, 2020, 102, 022601.	2.1	6
41	Transmission X-ray scattering as a probe for complex liquid-surface structures. Journal of Synchrotron Radiation, 2016, 23, 519-531.	2.4	4
42	Stimuliâ€Responsive Materials: Stimuliâ€Responsive Materials with Selfâ€Healing Antifouling Surface via 3D Polymer Grafting (Adv. Funct. Mater. 36/2013). Advanced Functional Materials, 2013, 23, 4390-4390.	14.9	3
43	Relationship between liquid nanoscale structure in solvents and the strength of the Hofmeister effect in extraction experiments. Physical Chemistry Chemical Physics, 2021, 23, 6266-6277.	2.8	3
44	Diffusion of Circular DNA in Twoâ€Dimensional Cavity Arrays. ChemPhysChem, 2009, 10, 2847-2851.	2.1	2
45	Optical simulation of ultimate performance enhancement in ultrathin Si solar cells by semiconductor nanocrystal energy transfer sensitization. Nanoscale Advances, 2021, 3, 991-996.	4.6	1
46	Thin Films: Long Range Selfâ€Assembly of Polythiophene Breath Figures: Optical and Morphological Characterization (Adv. Funct. Mater. 37/2015). Advanced Functional Materials, 2015, 25, 5878-5878.	14.9	0