Diethard Tautz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2614902/publications.pdf

Version: 2024-02-01

209 papers 28,180 citations

67 h-index

13865

⁵⁹⁸⁸ 160 g-index

229 all docs 229 docs citations

times ranked

229

23401 citing authors

#	Article	IF	CITATIONS
1	Effects of the Expression of Random Sequence Clones on Growth and Transcriptome Regulation in Escherichia coli. Genes, 2022, 13, 53.	2.4	9
2	Tracing the Origin and Evolutionary Fate of Recent Gene Retrocopies in Natural Populations of the House Mouse. Molecular Biology and Evolution, 2022, 39, .	8.9	6
3	Testing the accuracy of 3D automatic landmarking via genome-wide association studies. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	2
4	Inbred lab mice are not isogenic: genetic variation within inbred strains used to infer the mutation rate per nucleotide site. Heredity, 2021, 126, 107-116.	2.6	20
5	Independent evolution toward larger body size in the distinctive Faroe Island mice. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	0
6	The mutational load in natural populations is significantly affected by high primary rates of retroposition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
7	Testing Implications of the Omnigenic Model for the Genetic Analysis of Loci Identified through Genome-wide Association. Current Biology, 2021, 31, 1092-1098.e6.	3.9	15
8	The imprinted lncRNA <i>Peg13</i> regulates sexual preference and the sex-specific brain transcriptome in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
9	Natural copy number variation of tandemly repeated regulatory SNORD RNAs leads to individual phenotypic differences in mice. Molecular Ecology, 2021, 30, 4708-4722.	3.9	3
10	A humanized version of Foxp2 affects ultrasonic vocalization in adult female and male mice. Genes, Brain and Behavior, 2021, 20, e12764.	2.2	5
11	Frequent lineage-specific substitution rate changes support an episodic model for protein evolution. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	1
12	The Effects of Sequence Length and Composition of Random Sequence Peptides on the Growth of E. coli Cells. Genes, 2021, 12, 1913.	2.4	11
13	Evolution of a New Testis-Specific Functional Promoter Within the Highly Conserved Map2k7 Gene of the Mouse. Frontiers in Genetics, 2021, 12, 812139.	2.3	1
14	Identification of a genetic network for an ecologically relevant behavioural phenotype in Drosophila melanogaster. Molecular Ecology, 2020, 29, 502-518.	3.9	3
15	The amylase gene cluster in house mice (Mus musculus) was subject to repeated introgression including the rescue of a pseudogene. BMC Evolutionary Biology, 2020, 20, 56.	3.2	4
16	Population Genomics of the House Mouse and the Brown Rat. Methods in Molecular Biology, 2020, 2090, 435-452.	0.9	3
17	Dedicated transcriptomics combined with power analysis lead to functional understanding of genes with weak phenotypic changes in knockout lines. PLoS Computational Biology, 2020, 16, e1008354.	3.2	6
18	Title is missing!. , 2020, 16, e1008354.		O

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1008354.		O
20	Title is missing!. , 2020, 16, e1008354.		0
21	Title is missing!. , 2020, 16, e1008354.		0
22	Title is missing!. , 2020, 16, e1008354.		0
23	Title is missing!. , 2020, 16, e1008354.		0
24	Human core duplicon gene families: game changers or game players?. Briefings in Functional Genomics, 2019, 18, 402-411.	2.7	16
25	Effects of a male meiotic driver on male and female transcriptomes in the house mouse. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191927.	2.6	12
26	A de novo evolved gene in the house mouse regulates female pregnancy cycles. ELife, 2019, 8, .	6.0	37
27	Low-level mitochondrial heteroplasmy modulates DNA replication, glucose metabolism and lifespan in mice. Scientific Reports, 2018, 8, 5872.	3.3	26
28	Meta-populational demes constitute a reservoir for large MHC allele diversity in wild house mice (Mus musculus). Frontiers in Zoology, 2018, 15, 15.	2.0	11
29	Using the <i>Mus musculus</i> hybrid zone to assess covariation and genetic architecture of limb bone lengths. Molecular Ecology Resources, 2018, 18, 908-921.	4.8	8
30	Dealing with the adaptive immune system during de novo evolution of genes from intergenic sequences. BMC Evolutionary Biology, 2018, 18, 121.	3.2	10
31	Reply to â€No beneficial fitness effects of random peptides'. Nature Ecology and Evolution, 2018, 2, 1048-1048.	7.8	5
32	Involvement of SPATA31 copy number variable genes in human lifespan. Aging, 2018, 10, 674-688.	3.1	7
33	No evidence for phylostratigraphic bias impacting inferences on patterns of gene emergence and evolution. Molecular Biology and Evolution, 2017, 34, msw284.	8.9	74
34	Tracing the dynamics of gene transcripts after organismal death. Open Biology, 2017, 7, 160267.	3.6	72
35	Random sequences are an abundant source of bioactive RNAs or peptides. Nature Ecology and Evolution, 2017, 1, 0217.	7.8	76
36	Segmental duplications and evolutionary acquisition of UV damage response in the SPATA31 gene family of primates and humans. BMC Genomics, 2017, 18, 222.	2.8	8

#	Article	IF	CITATIONS
37	Indigenous house mice dominate small mammal communities in northern Afghan military bases. BMC Zoology, 2017, 2, .	1.0	6
38	Automated Phenotyping Indicates Pupal Size in <i>Drosophila</i> Is a Highly Heritable Trait with an Apparent Polygenic Basis. G3: Genes, Genomes, Genetics, 2017, 7, 1277-1286.	1.8	7
39	Craniofacial shape transition across the house mouse hybrid zone: implications for the genetic architecture and evolution of between-species differences. Development Genes and Evolution, 2016, 226, 173-186.	0.9	24
40	Genomic resources for wild populations of the house mouse, Mus musculus and its close relative Mus spretus. Scientific Data, 2016, 3, 160075.	5.3	125
41	Fast turnover of genome transcription across evolutionary time exposes entire non-coding DNA to de novo gene emergence. ELife, 2016, 5, e09977.	6.0	113
42	Ecoâ€genomic analysis of the poleward range expansion of the wasp spider <i><scp>A</scp>rgiope bruennichi</i> shows rapid adaptation and genomic admixture. Global Change Biology, 2015, 21, 4320-4332.	9.5	54
43	Selective sweeps versus introgression - population genetic dynamics of the murine leukemia virus receptor Xpr1 in wild populations of the house mouse (Mus musculus). BMC Evolutionary Biology, 2015, 15, 248.	3.2	9
44	Mapping of Craniofacial Traits in Outbred Mice Identifies Major Developmental Genes Involved in Shape Determination. PLoS Genetics, 2015, 11, e1005607.	3.5	67
45	Divergence patterns of genic copy number variation in natural populations of the house mouse (Mus) Tj ETQq1 1 Genome Research, 2015, 25, 1114-1124.	0.784314 5.5	rgBT /Overl 88
46	Eurasian house mouse (Mus musculus L.) differentiation at microsatellite loci identifies the Iranian plateau as a phylogeographic hotspot. BMC Evolutionary Biology, 2015, 15, 26.	3.2	59
47	Molecular and phenotypic distinction of the very recently evolved insular subspecies Mus musculus helgolandicus ZIMMERMANN, 1953. BMC Evolutionary Biology, 2015, 15, 160.	3.2	20
48	A Revised Design for Microarray Experiments to Account for Experimental Noise and Uncertainty of Probe Response. PLoS ONE, 2014, 9, e91295.	2.5	15
49	Genomic Networks of Hybrid Sterility. PLoS Genetics, 2014, 10, e1004162.	3.5	84
50	Copy number variants and selective sweeps in natural populations of the house mouse (Mus musculus) Tj ETQq0	0.0.rgBT /0	Dygrlock 10
51	The Discovery of De Novo Gene Evolution. Perspectives in Biology and Medicine, 2014, 57, 149-161.	0.5	44
52	Genetic Differentiation of Hypothalamus Parentally Biased Transcripts in Populations of the House Mouse Implicate the Prader–Willi Syndrome Imprinted Region as a Possible Source of Behavioral Divergence. Molecular Biology and Evolution, 2014, 31, 3240-3249.	8.9	17
53	Evolution: Dynamics of De Novo Gene Emergence. Current Biology, 2014, 24, R238-R240.	3.9	54
54	Semi-automatic landmark point annotation for geometric morphometrics. Frontiers in Zoology, 2014, 11, .	2.0	27

#	Article	IF	Citations
55	Use of a natural hybrid zone for genomewide association mapping of craniofacial traits in the house mouse. Molecular Ecology, 2014, 23, 5756-5770.	3.9	58
56	A Role for Ultrasonic Vocalisation in Social Communication and Divergence of Natural Populations of the House Mouse (Mus musculus domesticus). PLoS ONE, 2014, 9, e97244.	2.5	59
57	One size does not fit all. ELife, 2014, 3, e02088.	6.0	0
58	Quantitative shape analysis with weighted covariance estimates for increased statistical efficiency. Frontiers in Zoology, 2013, 10, 16.	2.0	2
59	Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics, 2013, 14, 117.	2.8	218
60	Exploring the effects of gene dosage on mandible shape in mice as a model for studying the genetic basis of natural variation. Development Genes and Evolution, 2013, 223, 279-287.	0.9	34
61	Paternal imprinting of mating preferences between natural populations of house mice (<i><scp>M</scp>us musculus domesticus</i>). Molecular Ecology, 2013, 22, 2549-2562.	3.9	30
62	Physico-chemical foundations underpinning microarray and next-generation sequencing experiments. Nucleic Acids Research, 2013, 41, 2779-2796.	14.5	49
63	Increased mitochondrial mutation frequency after an island colonization: positive selection or accumulation of slightly deleterious mutations?. Biology Letters, 2013, 9, 20121123.	2.3	14
64	Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3229-3236.	7.1	2,181
65	Northern range expansion of <scp>E</scp> uropean populations of the wasp spider <i><scp>A</scp>rgiope bruennichi</i> is associated with global warming–correlated genetic admixture and populationâ€specific temperature adaptations. Molecular Ecology, 2013, 22, 2232-2248.	3.9	117
66	Genome Patterns of Selection and Introgression of Haplotypes in Natural Populations of the House Mouse (Mus musculus). PLoS Genetics, 2012, 8, e1002891.	3.5	128
67	Parallel Selection Mapping Using Artificially Selected Mice Reveals Body Weight Control Loci. Current Biology, 2012, 22, 794-800.	3.9	82
68	TINA manual landmarking tool: software for the precise digitization of 3D landmarks. Frontiers in Zoology, 2012, 9, 6.	2.0	26
69	Rapid formation of distinct hybrid lineages after secondary contact of two fish species (<i>Cottus</i>) Tj ETQq1 1	9.78431	4 ggBT /Ove
70	The evolutionary origin of orphan genes. Nature Reviews Genetics, 2011, 12, 692-702.	16.3	663
71	Not just another genome. BMC Biology, 2011, 9, 8.	3.8	16
72	Micro-evolutionary divergence patterns of mandible shapes in wild house mouse (Mus musculus) populations. BMC Evolutionary Biology, 2011, 11, 306.	3.2	26

#	Article	IF	CITATIONS
73	A comparative assessment of mandible shape in a consomic strain panel of the house mouse (Mus) Tj ETQq1 Biology, 2011, 11, 309.	1 0.784314 rg 3.2	BT /Overloc 21
74	An Evaluation of the Use of the LSU rRNA D1-D5 Domain for DNA-based Taxonomy of Eukaryotic Protists. Protist, 2010, 161, 342-352.	1.5	35
75	Understanding the onset of hybrid speciation. Trends in Genetics, 2010, 26, 54-58.	6.7	200
76	House mouse colonization patterns on the sub-Antarctic Kerguelen Archipelago suggest singular primary invasions and resilience against re-invasion. BMC Evolutionary Biology, 2010, 10, 325.	3.2	74
77	Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biology, 2010, 8, 66.	3.8	235
78	A TEST OF THE NEUTRAL MODEL OF EXPRESSION CHANGE IN NATURAL POPULATIONS OF HOUSE MOUSE SUBSPECIES. Evolution; International Journal of Organic Evolution, 2010, 64, 549-560.	2.3	17
79	Nucleotide divergence vs. gene expression differentiation: comparative transcriptome sequencing in natural isolates from the carrion crow and its hybrid zone with the hooded crow. Molecular Ecology, 2010, 19, 162-175.	3.9	125
80	Next Generation Molecular Ecology. Molecular Ecology, 2010, 19, 1-3.	3.9	109
81	A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature, 2010, 468, 815-818.	27.8	374
82	Copy Number Changes of CNV Regions in Intersubspecific Crosses of the House Mouse. Molecular Biology and Evolution, 2010, 27, 1845-1856.	8.9	32
83	The root of the East African cichlid radiations. BMC Evolutionary Biology, 2009, 9, 186.	3.2	97
84	Emergence of a New Gene from an Intergenic Region. Current Biology, 2009, 19, 1527-1531.	3.9	177
85	The role of the segmentation gene hairy in Tribolium. Development Genes and Evolution, 2008, 218, 465-477.	0.9	55
86	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	27.8	1,255
87	Tracing early stages of species differentiation: Ecological, morphological and genetic divergence of $Gal\tilde{A}_1$ pagos sea lion populations. BMC Evolutionary Biology, 2008, 8, 150.	3.2	73
88	Simultaneous quantification of multiple nucleic acid targets in complex rRNA mixtures using high density microarrays and nonspecific hybridization as a source of information. Journal of Microbiological Methods, 2008, 75, 92-102.	1.6	9
89	An Ancient Evolutionary Origin of Genes Associated with Human Genetic Diseases. Molecular Biology and Evolution, 2008, 25, 2699-2707.	8.9	161
90	Identification of Selective Sweeps in Closely Related Populations of the House Mouse Based on Microsatellite Scans. Genetics, 2008, 180, 1537-1545.	2.9	52

#	Article	IF	Citations
91	Selection on cis-Regulatory Variation at B4galnt2 and Its Influence on von Willebrand Factor in House Mice. Molecular Biology and Evolution, 2008, 26, 567-578.	8.9	23
92	Delimiting the conserved features of <i>hunchback </i> function for the trunk organization of insects. Development (Cambridge), 2008, 135, 881-888.	2.5	56
93	Polycistronic peptide coding genes in eukaryotes-how widespread are they?. Briefings in Functional Genomics & Proteomics, 2008, 8, 68-74.	3.8	26
94	Contrasting evolution of expression differences in the testis between species and subspecies of the house mouse. Genome Research, 2007, 17, 42-49.	5.5	67
95	Oligonucleotide microarrays: widely applied poorly understood. Briefings in Functional Genomics & Proteomics, 2007, 6, 141-148.	3.8	58
96	${\sf Gal} \tilde{\sf A}_i {\sf pagos}$ and ${\sf Californian}$ sea lions are separate species: Genetic analysis of the genus Zalophus and its implications for conservation management. Frontiers in Zoology, 2007, 4, 20.	2.0	53
97	An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Frontiers in Zoology, 2007, 4, 6.	2.0	306
98	Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest. Molecular Ecology, 2007, 16, 4550-4561.	3.9	88
99	TECHNICAL ARTICLE: A pooling approach to detect signatures of selective sweeps in genome scans using microsatellites. Molecular Ecology Notes, 2007, 7, 400-403.	1.7	14
100	A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends in Genetics, 2007, 23, 533-539.	6.7	364
101	A Segmentation Gene in Tribolium Produces a Polycistronic mRNA that Codes for Multiple Conserved Peptides. Cell, 2006, 126, 559-569.	28.9	149
102	her1 and her13.2 are jointly required for somitic border specification along the entire axis of the fish embryo. Developmental Biology, 2006, 293, 242-251.	2.0	28
103	Development of new microsatellite loci and evaluation of loci from other pinniped species for the Galápagos sea lion (Zalophus californianus wollebaeki). Conservation Genetics, 2006, 7, 461-465.	1.5	21
104	Genome-wide acceleration of protein evolution in flies (Diptera). BMC Evolutionary Biology, 2006, 6, 7.	3.2	47
105	Tests of rRNA hybridization to microarrays suggest that hybridization characteristics of oligonucleotide probes for species discrimination cannot be predicted. Nucleic Acids Research, 2006, 34, e66-e66.	14.5	101
106	An Analysis of Signatures of Selective Sweeps in Natural Populations of the House Mouse. Molecular Biology and Evolution, 2006, 23, 790-797.	8.9	95
107	Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. Genome Research, 2006, 16, 1334-1338.	5 . 5	233
108	The B4galnt2 Regulatory Polymorphism, Mvwf1, Causes Low VWF Levels and Segregates in Natural Mouse Populations. Blood, 2006, 108, 542-542.	1.4	0

#	Article	IF	CITATIONS
109	Direct cloning of microsatellite loci from Cottus gobio through a simplified enrichment procedure. Molecular Ecology Notes, 2005, 5, 628-636.	1.7	41
110	Evolution of dorsal-ventral axis formation in arthropod appendages: H15 and optomotor-blind/bifid-type T-box genes in the millipede Glomeris marginata (Myriapoda: Diplopoda). Evolution & Development, 2005, 7, 51-57.	2.0	32
111	WHAT WE HAVE ALSO LEARNED: ADAPTIVE SPECTIATION IS THEORETICALLY PLAUSIBLE. Evolution; International Journal of Organic Evolution, 2005, 59, 691-695.	2.3	51
112	Microsatellite variability in wild populations of the house mouse is not influenced by differences in chromosomal recombination rates. Biological Journal of the Linnean Society, 2005, 84, 629-635.	1.6	6
113	An algorithm for the determination and quantification of components of nucleic acid mixtures based on single sequencing reactions. BMC Bioinformatics, 2005, 6, 281.	2.6	6
114	An invasive lineage of sculpins, <i>Cottus </i> sp. (Pisces, Teleostei) in the Rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2379-2387.	2.6	180
115	WHAT WE HAVE ALSO LEARNED: ADAPTIVE SPECIATION IS THEORETICALLY PLAUSIBLE. Evolution; International Journal of Organic Evolution, 2005, 59, 691.	2.3	15
116	Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1917-1924.	4.0	149
117	What we have also learned: adaptive speciation is theoretically plausible. Evolution; International Journal of Organic Evolution, 2005, 59, 691-5; discussion 696-9.	2.3	48
118	Adaptive divergence vs. environmental plasticity: tracing local genetic adaptation of metamorphosis traits in salamanders. Molecular Ecology, 2004, 13, 1665-1677.	3.9	66
119	Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the Fire salamander Salamandra salamandra (Amphibia: Caudata). Molecular Ecology Notes, 2004, 4, 626-628.	1.7	41
120	Separable stripe enhancer elements for the pairâ€rule gene hairy in the beetle Tribolium. EMBO Reports, 2004, 5, 638-642.	4.5	42
121	Of statistics and genomes. Trends in Genetics, 2004, 20, 344-346.	6.7	6
122	her11 is involved in the somitogenesis clock in zebrafish. Development Genes and Evolution, 2004, 214, 393-406.	0.9	40
123	Editorial. Development Genes and Evolution, 2004, 214, 579-581.	0.9	0
124	Correlated Evolution of Synonymous and Nonsynonymous Sites in Drosophila. Journal of Molecular Evolution, 2004, 59, 771-779.	1.8	47
125	Segmentation. Developmental Cell, 2004, 7, 301-312.	7.0	125
126	Phylogeography and Patterns of Incipient Speciation. , 2004, , 305-321.		5

#	Article	IF	Citations
127	Prospero and Snail expression during spider neurogenesis. Development Genes and Evolution, 2003, 213, 554-566.	0.9	28
128	Neurogenesis in the spider: new insights from comparative analysis of morphological processes and gene expression patterns. Arthropod Structure and Development, 2003, 32, 5-16.	1.4	35
129	Characterization of spotted hyena, Crocuta crocutamicrosatellite loci. Molecular Ecology Notes, 2003, 3, 360-362.	1.7	16
130	Splitting in space. Nature, 2003, 421, 225-226.	27.8	10
131	The role of Suppressor of Hairless in Notch mediated signalling during zebrafish somitogenesis. Mechanisms of Development, 2003, 120, 1083-1094.	1.7	52
132	Chordate Evolution in a New Light. Cell, 2003, 113, 812-813.	28.9	8
133	The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Developmental Biology, 2003, 260, 97-112.	2.0	93
134	A plea for DNA taxonomy. Trends in Ecology and Evolution, 2003, 18, 70-74.	8.7	781
135	Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish. Development (Cambridge), 2003, 130, 4269-4278.	2.5	88
136	An Evolutionary Analysis of Orphan Genes in Drosophila. Genome Research, 2003, 13, 2213-2219.	5.5	223
137	Molecular phylogeny of the salamandrid genus Neurergus: evidence for an intrageneric switch of reproductive biology. Amphibia - Reptilia, 2002, 23, 419-431.	0.5	31
138	The hidden matrilineal structure of a solitary lemur: implications for primate social evolution. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1755-1763.	2.6	65
139	An algorithm and program for finding sequence specific oligonucleotide probes for species identification. BMC Bioinformatics, 2002, 3, 9.	2.6	26
140	The genetic population structure of the gray mouse lemur (Microcebus murinus), a basal primate from Madagascar. Behavioral Ecology and Sociobiology, 2002, 52, 166-175.	1.4	75
141	The impact of stocking on the genetic integrity of Arctic charr (Salvelinus) populations from the Alpine region. Molecular Ecology, 2002, 11, 1017-1027.	3.9	39
142	DNA points the way ahead in taxonomy. Nature, 2002, 418, 479-479.	27.8	162
143	Homologues of c-hairy1 (her9) and lunatic fringe in zebrafish are expressed in the developing central nervous system, but not in the presomitic mesoderm. Development Genes and Evolution, 2001, 211, 493-500.	0.9	53
144	Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Molecular Ecology, 2001, 10, 1471-1488.	3.9	197

#	Article	IF	Citations
145	Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature, 2001, 413, 154-157.	27.8	272
146	Neurogenesis in the spider <i>Cupiennius salei</i> . Development (Cambridge), 2001, 128, 2673-2688.	2.5	89
147	Mitochondrial sequence analysis of Salamandra taxa suggests old splits of major lineages and postglacial recolonizations of Central Europe from distinct source populations of Salamandra salamandra. Molecular Ecology, 2000, 9, 397-410.	3.9	189
148	A genetic uncertainty problem. Trends in Genetics, 2000, 16, 475-477.	6.7	59
149	Evolution of transcriptional regulation. Current Opinion in Genetics and Development, 2000, 10, 575-579.	3.3	158
150	Whole MountIn Situhybridization for the Detection of mRNA inDrosophilaEmbryos., 2000,, 573-580.		2
151	Intracommunity relationships, dispersal pattern and paternity success in a wild living community of Bonobos (Pan paniscus) determined from DNA analysis of faecal samples. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1189-1195.	2.6	233
152	Comparative molecular embryology of arthropods: the expression of Hox genes in the spider <i>Cupiennius salei</i> . Invertebrate Reproduction and Development, 1999, 36, 203-209.	0.8	17
153	A Comparison of Homologous Developmental Genes from Drosophila and Tribolium Reveals Major Differences in Length and Trinucleotide Repeat Content. Journal of Molecular Evolution, 1999, 49, 558-566.	1.8	13
154	Segmentation gene expression in the mothmidge Clogmia albipunctata (Diptera, Psychodidae) and other primitive dipterans. Development Genes and Evolution, 1999, 209, 145-154.	0.9	66
155	Ancient molecular parasites. Trends in Genetics, 1999, 15, 221.	6.7	0
156	Abdominal-B expressionin a spider suggests a general role forAbdominal-B specifying the genital structure., 1999, 285, 85-91.		44
157	Elimination of EVE protein by CALI in the short germ band insect Tribolium suggests a conserved pair-rule function for even skipped. Mechanisms of Development, 1999, 80, 191-195.	1.7	37
158	Zebrafish zic1 expression in brain and somites is affected by BMP and Hedgehog signalling. Mechanisms of Development, 1999, 85, 147-159.	1.7	60
159	Large Number of Replacement Polymorphisms in Rapidly Evolving Genes of Drosophila: Implications for Genome-Wide Surveys of DNA Polymorphism. Genetics, 1999, 153, 1717-1729.	2.9	40
160	Formation of Embryonic Axes and Blastoderm Pattern in Drosophila. , 1999, , 311-330.		2
161	Debatable homologies. Nature, 1998, 395, 17-19.	27.8	35
162	Molecular Phylogenetics at the Felsenstein Zone: Approaching the Strepsiptera Problem Using 5.8S and 28S rDNA Sequences. Molecular Phylogenetics and Evolution, 1998, 9, 470-480.	2.7	54

#	Article	IF	Citations
163	A Hox class 3 orthologue from the spider Cupiennius salei is expressed in a Hox-gene-like fashion. Development Genes and Evolution, 1998, 208, 586-590.	0.9	82
164	Sperm usage in honey bees. Behavioral Ecology and Sociobiology, 1998, 42, 247-255.	1.4	56
165	From genes to individuals: developmental genes and the generation of the phenotype. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 231-240.	4.0	29
166	Molecular technologies for biodiversity evaluation: Opportunities and challenges. Nature Biotechnology, 1997, 15, 625-628.	17.5	147
167	Evolution and Phylogeny of the Diptera: A Molecular Phylogenetic Analysis Using 28S rDNA Sequences. Systematic Biology, 1997, 46, 674-698.	5.6	100
168	Polymorphism and Locus-Specific Effects on Polymorphism at Microsatellite Loci in Natural <i>Drosophila melanogaster</i>	2.9	112
169	Evolution and Phylogeny of the Diptera: A Molecular Phylogenetic Analysis Using 28S rDNA Sequences. Systematic Biology, 1997, 46, 674.	5.6	12
170	Two orthodenticle -related genes in the short-germ beetle Tribolium castaneum. Development Genes and Evolution, 1996, 206, 35-45.	0.9	59
171	Chromophore-assisted laser inactivation of even skipped in Drosophila precisely phenocopies genetic loss of function. Development Genes and Evolution, 1996, 206, 86-88.	0.9	21
172	Evolution of segmentation genes in insects. Trends in Genetics, 1995, 11, 23-27.	6.7	53
173	Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature, 1995, 376, 165-167.	27.8	360
174	Expression patterns oftwist and snail in Tribolium (Coleoptera) suggest a homologous formation of mesoderm in long and short germ band insects. Genesis, 1994, 15, 32-37.	2.1	45
175	Sympatric speciation suggested by monophyly of crater lake cichlids. Nature, 1994, 368, 629-632.	27.8	419
176	Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Current Biology, 1994, 4, 777-783.	3.9	252
177	Chapter 30 In Situ Hybridization to RNA. Methods in Cell Biology, 1994, 44, 575-598.	1.1	198
178	Insect calcium channels. FEBS Letters, 1994, 339, 189-194.	2.8	38
179	Simple sequences. Current Opinion in Genetics and Development, 1994, 4, 832-837.	3.3	282
180	Regulatory and coding regions of the segmentation gene hunchback are functionally conserved between Drosophila virilis and Drosophila melanogaster. Mechanisms of Development, 1994, 45, 105-115.	1.7	52

#	Article	IF	CITATIONS
181	Insect embryogenesis - what is ancestral and what is derived?. Development (Cambridge), 1994, 1994, 193-199.	2.5	43
182	Involvement of an orthologue of the Drosophila pair-rule gene hairy in segment formation of the short germ-band embryo of Tribolium (Coleoptera). Nature, 1993, 361, 448-450.	27.8	159
183	Social structure of pilot whales revealed by analytical DNA profiling. Science, 1993, 260, 670-672.	12.6	334
184	Notes on the definition and nomenclature of tandemly repetitive DNA sequences., 1993, 67, 21-28.		139
185	Slippage synthesis of simple sequence DNA. Nucleic Acids Research, 1992, 20, 211-215.	14.5	1,000
186	Problems and paradigms: Redundancies, development and the flow of information. BioEssays, 1992, 14, 263-266.	2.5	196
187	Genetic and Molecular Analysis of Early Pattern Formation in Drosophila. , 1992, , 308-327.		4
188	In Situ Formats. , 1992, , 304-392.		0
189	Conservation of polymorphic simple sequence loci in cetacean species. Nature, 1991, 354, 63-65.	27.8	336
190	Isolation of simple-sequence loci for use in polymerase chain reaction-based DNA fingerprinting. Electrophoresis, 1991, 12, 113-118.	2.4	327
191	Asynchronous mitotic domains during blastoderm formation inMusca domestica L. (Diptera). Roux's Archives of Developmental Biology, 1991, 199, 373-376.	1.2	12
192	Genetic and Molecular Analysis of Pattern Formation Processes in Drosophila., 1991,, 273-282.		0
193	A morphogenetic gradient of hunchback protein organizes the expression of the gap genes $Kr\tilde{A}^{1}/4ppel$ and knirps in the early Drosophila embryo. Nature, 1990, 346, 577-580.	27.8	479
194	What's new: Genomic finger printing goes simple. BioEssays, 1990, 12, 44-46.	2.5	18
195	Minimal homology requirements for PCR primers. Nucleic Acids Research, 1989, 17, 6749-6749.	14.5	203
196	A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma, 1989, 98, 81-85.	2.2	2,665
197	Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene. Nature, 1989, 338, 629-632.	27.8	191
198	Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 1989, 17, 6463-6471.	14.5	1,990

#	Article	IF	CITATIONS
199	Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres. Nature, 1988, 332, 281-284.	27.8	350
200	Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes. Nature, 1987, 327, 383-389.	27.8	426
201	Evolutionary divergence of promoters and spacers in the rDNA family of four Drosophila species. Journal of Molecular Biology, 1987, 195, 525-542.	4.2	135
202	Transcription of the tandem array of ribosomal DNA in <i>Drosophila melanogaster</i> does not terminate at any fixed point. EMBO Journal, 1986, 5, 1267-1273.	7.8	74
203	Cryptic simplicity in DNA is a major source of genetic variation. Nature, 1986, 322, 652-656.	27.8	621
204	Cross-regulatory interactions among the gap genes of Drosophila. Nature, 1986, 324, 668-670.	27.8	169
205	Conservation of major nuclease S1-sensitive sites in the non-conserved spacer region of ribosomal DNA in Drosophila species. Journal of Molecular Biology, 1985, 183, 519-527.	4.2	9
206	Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 1984, 12, 4127-4138.	14.5	1,180
207	Simple DNA sequences of Drosophila virilis isolated by screening with RNA. Journal of Molecular Biology, 1984, 172, 229-235.	4.2	54
208	An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Analytical Biochemistry, 1983, 132, 14-19.	2.4	568
209	Tracing recent adaptations in natural populations of the house mouse., 0,, 315-333.		4