
Ana Victoria Lechuga-Vieco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/261466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell, 2020, 183, 94-109.e23.	28.9	360
2	Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature, 2016, 535, 561-565.	27.8	333
3	A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity, 2019, 50, 390-402.e10.	14.3	258
4	Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature, 2020, 586, 287-291.	27.8	139
5	NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell, 2020, 19, e13050.	6.7	111
6	Ablation of the stress protease OMA1 protects against heart failure in mice. Science Translational Medicine, 2018, 10, .	12.4	66
7	Regulation of Mother-to-Offspring Transmission of mtDNA Heteroplasmy. Cell Metabolism, 2019, 30, 1120-1130.e5.	16.2	66
8	MKK6 controls T3-mediated browning of white adipose tissue. Nature Communications, 2017, 8, 856.	12.8	54
9	CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart. PLoS Genetics, 2017, 13, e1006985.	3.5	54
10	One-Step Fast Synthesis of Nanoparticles for MRI: Coating Chemistry as the Key Variable Determining Positive or Negative Contrast. Langmuir, 2017, 33, 10239-10247.	3.5	43
11	Parallel Multifunctionalization of Nanoparticles: A One-Step Modular Approach for in Vivo Imaging. Bioconjugate Chemistry, 2015, 26, 153-160.	3.6	39
12	Comprehensive Quantification of the Modified Proteome Reveals Oxidative Heart Damage in Mitochondrial Heteroplasmy. Cell Reports, 2018, 23, 3685-3697.e4.	6.4	39
13	Screening of effective pharmacological treatments for MELAS syndrome using yeasts, fibroblasts and cybrid models of the disease. British Journal of Pharmacology, 2012, 167, 1311-1328.	5.4	38
14	In vivo imaging of lung inflammation with neutrophil-specific 68Ga nano-radiotracer. Scientific Reports, 2017, 7, 13242.	3.3	37
15	Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics. Science Advances, 2020, 6, eaba5345.	10.3	31
16	Phosphatidylcholineâ€Coated Iron Oxide Nanomicelles for In Vivo Prolonged Circulation Time with an Antibiofouling Protein Corona. Chemistry - A European Journal, 2014, 20, 16662-16671.	3.3	26
17	Superparamagnetic Nanoparticles for Atherosclerosis Imaging. Nanomaterials, 2014, 4, 408-438.	4.1	25
18	T1-MRI Fluorescent Iron Oxide Nanoparticles by Microwave Assisted Synthesis. Nanomaterials, 2015, 5, 1880-1890.	4.1	21

#	Article	IF	CITATIONS
19	Not all <scp>mitochondrial DNAs</scp> are made equal and the nucleus knows it. IUBMB Life, 2021, 73, 511-529.	3.4	20
20	Microwave-driven synthesis of bisphosphonate nanoparticles allows in vivo visualisation of atherosclerotic plaque. RSC Advances, 2015, 5, 1661-1665.	3.6	16
21	Surfaceâ€Functionalized Nanoparticles by Olefin Metathesis: A Chemoselective Approach for In Vivo Characterization of Atherosclerosis Plaque. Chemistry - A European Journal, 2015, 21, 10450-10456.	3.3	13
22	Protein corona and phospholipase activity drive selective accumulation of nanomicelles in atherosclerotic plaques. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 643-650.	3.3	12
23	The portrait of liver cancer is shaped by mitochondrial genetics. Cell Reports, 2022, 38, 110254.	6.4	10
24	Heteroplasmy of Wild-Type Mitochondrial DNA Variants in Mice Causes Metabolic Heart Disease With Pulmonary Hypertension and Frailty. Circulation, 2022, 145, 1084-1101.	1.6	10
25	Delayed alveolar clearance of nanoparticles through control of coating composition and interaction with lung surfactant protein A. Materials Science and Engineering C, 2022, 134, 112551.	7.3	9
26	Enhanced Immunogenicity of Mitochondrial-Localized Proteins in Cancer Cells. Cancer Immunology Research, 2020, 8, 685-697.	3.4	6
27	Mitochondrial DNA impact on joint damaged process in a conplastic mouse model after being surgically induced with osteoarthritis. Scientific Reports, 2021, 11, 9112.	3.3	6
28	Mitochondrial Proteins as Source of Cancer Neoantigens. International Journal of Molecular Sciences, 2022, 23, 2627.	4.1	4
29	mtDNA variability determines spontaneous joint aging damage in a conplastic mouse model. Aging, 2022, 14, 5966-5983.	3.1	3
30	The Portrait of Liver Cancer is Shaped by Mitochondrial Genetics. SSRN Electronic Journal, 0, , .	0.4	0