Simone Fulda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2614505/publications.pdf

Version: 2024-02-01

263 papers 33,883 citations

67 h-index 175 g-index

293 all docs

293
docs citations

times ranked

293

47675 citing authors

#	Article	IF	CITATIONS
1	ATF4 links ER stress with reticulophagy in glioblastoma cells. Autophagy, 2021, 17, 2432-2448.	9.1	66
2	Organelle-specific mechanisms of drug-induced autophagy-dependent cell death. Matrix Biology, 2021, 100-101, 54-64.	3.6	13
3	Quantitative singleâ€molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFαâ€induced NFâ€Ä¸B signaling. Journal of Leukocyte Biology, 2021, 109, 363-371.	3.3	14
4	Autophagy activation, lipotoxicity and lysosomal membrane permeabilization synergize to promote pimozide- and loperamide-induced glioma cell death. Autophagy, 2021, 17, 3424-3443.	9.1	39
5	Apoptotic Cells induce Proliferation of Peritoneal Macrophages. International Journal of Molecular Sciences, 2021, 22, 2230.	4.1	2
6	Genetic deletion of Nox4 enhances cancerogen-induced formation of solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	20
7	Smac mimetics and TRAIL cooperate to induce MLKL-dependent necroptosis in Burkitt's lymphoma cell lines. Neoplasia, 2021, 23, 539-550.	5.3	8
8	The Pediatric Precision Oncology INFORM Registry: Clinical Outcome and Benefit for Patients with Very High-Evidence Targets. Cancer Discovery, 2021, 11, 2764-2779.	9.4	110
9	The long non-coding RNA HOTAIRM1 promotes tumor aggressiveness and radiotherapy resistance in glioblastoma. Cell Death and Disease, 2021, 12, 885.	6.3	22
10	USP22 controls necroptosis by regulating receptorâ€interacting protein kinase 3 ubiquitination. EMBO Reports, 2021, 22, e50163.	4.5	48
11	Targeting ferroptosis in rhabdomyosarcoma cells. International Journal of Cancer, 2020, 146, 510-520.	5.1	55
12	Thioredoxin inhibitor PX-12 induces mitochondria-mediated apoptosis in acute lymphoblastic leukemia cells. Biological Chemistry, 2020, 401, 273-283.	2.5	9
13	Next-generation hypomethylating agent SGI-110 primes acute myeloid leukemia cells to IAP antagonist by activating extrinsic and intrinsic apoptosis pathways. Cell Death and Differentiation, 2020, 27, 1878-1895.	11.2	8
14	Nextâ€generation sequencing reveals a novel role of lysineâ€specific demethylase 1 in adhesion of rhabdomyosarcoma cells. International Journal of Cancer, 2020, 146, 3435-3449.	5.1	5
15	The IRE1 and PERK arms of the unfolded protein response promote survival of rhabdomyosarcoma cells. Cancer Letters, 2020, 490, 76-88.	7.2	11
16	STF-62247 and pimozide induce autophagy and autophagic cell death in mouse embryonic fibroblasts. Scientific Reports, 2020, 10, 687.	3.3	6
17	Redox Modulation and Induction of Ferroptosis as a New Therapeutic Strategy in Hepatocellular Carcinoma. Translational Oncology, 2020, 13, 100785.	3.7	40
18	A direct comparison of selective BH3-mimetics reveals BCL-XL, BCL-2 and MCL-1 as promising therapeutic targets in neuroblastoma. British Journal of Cancer, 2020, 122, 1544-1551.	6.4	19

#	Article	IF	CITATIONS
19	Co-inhibition of BET proteins and PI3Kα triggers mitochondrial apoptosis in rhabdomyosarcoma cells. Oncogene, 2020, 39, 3837-3852.	5.9	9
20	Targeting BCL-2 proteins in pediatric cancer: Dual inhibition of BCL-XL and MCL-1 leads to rapid induction of intrinsic apoptosis. Cancer Letters, 2020, 482, 19-32.	7.2	41
21	Specific interactions of BCL-2 family proteins mediate sensitivity to BH3-mimetics in diffuse large B-cell lymphoma. Haematologica, 2020, 105, 2150-2163.	3.5	30
22	Proteasome inhibitors and Smac mimetics cooperate to induce cell death in diffuse large B ell lymphoma by stabilizing NOXA and triggering mitochondrial apoptosis. International Journal of Cancer, 2020, 147, 1485-1498.	5.1	6
23	Single-molecule imaging reveals the oligomeric state of functional TNF \hat{l} ±-induced plasma membrane TNFR1 clusters in cells. Science Signaling, 2020, 13, .	3.6	67
24	The novel dual BET/HDAC inhibitor TW09 mediates cell death by mitochondrial apoptosis in rhabdomyosarcoma cells. Cancer Letters, 2020, 486, 46-57.	7.2	24
25	ATM inhibition enhances Auranofin-induced oxidative stress and cell death in lung cell lines. PLoS ONE, 2020, 15, e0244060.	2.5	9
26	Biglycan is a new high-affinity ligand for CD14 in macrophages. Matrix Biology, 2019, 77, 4-22.	3.6	62
27	Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications. FEBS Journal, 2019, 286, 241-278.	4.7	568
28	Concomitant targeting of Hedgehog signaling and MCL-1 synergistically induces cell death in Hedgehog-driven cancer cells. Cancer Letters, 2019, 465, 1-11.	7.2	7
29	NF-κB contributes to Smac mimetic-conferred protection from tunicamycin-induced apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2019, 24, 269-277.	4.9	4
30	Smac mimetic suppresses tunicamycin-induced apoptosis via resolution of ER stress. Cell Death and Disease, 2019, 10, 155.	6.3	15
31	Cell cycle arrest in mitosis promotes interferon-induced necroptosis. Cell Death and Differentiation, 2019, 26, 2046-2060.	11.2	36
32	Side-by-side comparison of BH3-mimetics identifies MCL-1 as a key therapeutic target in AML. Cell Death and Disease, 2019, 10, 917.	6.3	27
33	A Perspective on Polo-Like Kinase-1 Inhibition for the Treatment of Rhabdomyosarcomas. Frontiers in Oncology, 2019, 9, 1271.	2.8	12
34	Cotreatment with sorafenib and oleanolic acid induces reactive oxygen species-dependent and mitochondrial-mediated apoptotic cell death in hepatocellular carcinoma cells. Anti-Cancer Drugs, 2019, 30, 209-217.	1.4	16
35	Differential involvement of TAK1, RIPK1 and NF-κB signaling in Smac mimetic-induced cell death in breast cancer cells. Biological Chemistry, 2019, 400, 171-180.	2.5	6
36	Identification of Smac mimetics as novel substrates for p-glycoprotein. Cancer Letters, 2019, 440-441, 126-134.	7.2	8

#	Article	IF	Citations
37	Interferons Transcriptionally Up-Regulate MLKL Expression in Cancer Cells. Neoplasia, 2019, 21, 74-81.	5.3	40
38	Selective BH3-mimetics targeting BCL-2, BCL-X _L or MCL-1 induce severe mitochondrial perturbations. Biological Chemistry, 2019, 400, 181-185.	2.5	8
39	Repurposing anticancer drugs for targeting necroptosis. Cell Cycle, 2018, 17, 829-832.	2.6	28
40	The landscape of genomic alterations across childhood cancers. Nature, 2018, 555, 321-327.	27.8	1,068
41	Targeting autophagy for the treatment of cancer. Biological Chemistry, 2018, 399, 673-677.	2.5	19
42	<i>NRAS</i> -Mutated Rhabdomyosarcoma Cells Are Vulnerable to Mitochondrial Apoptosis Induced by Coinhibition of MEK and PI3K b>î \pm . Cancer Research, 2018, 78, 2000-2013.	0.9	15
43	Cell death-based treatment of glioblastoma. Cell Death and Disease, 2018, 9, 121.	6.3	42
44	Smac mimetic induces an early wave of gene expression via NF- $\hat{l}^{\circ}B$ and AP-1 and a second wave via TNFR1 signaling. Cancer Letters, 2018, 421, 170-185.	7.2	12
45	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
46	Therapeutic opportunities based on caspase modulation. Seminars in Cell and Developmental Biology, 2018, 82, 150-157.	5.0	21
47	Mouse lung fibroblasts are highly susceptible to necroptosis in a reactive oxygen species-dependent manner. Biochemical Pharmacology, 2018, 153, 242-247.	4.4	15
48	Hedgehog signaling negatively co-regulates BH3-only protein Noxa and TAp73 in TP53-mutated cells. Cancer Letters, 2018, 429, 19-28.	7.2	5
49	Co-targeting of BET proteins and HDACs as a novel approach to trigger apoptosis in rhabdomyosarcoma cells. Cancer Letters, 2018, 428, 160-172.	7.2	38
50	BCL-xL-selective BH3 mimetic sensitizes rhabdomyosarcoma cells to chemotherapeutics by activation of the mitochondrial pathway of apoptosis. Cancer Letters, 2018, 412, 131-142.	7.2	24
51	Congenital embryonal rhabdomyosarcoma caused by heterozygous concomitant PTCH1 and PTCH2 germline mutations. European Journal of Human Genetics, 2018, 26, 137-142.	2.8	17
52	Structure-activity studies on N -Substituted tranylcypromine derivatives lead to selective inhibitors of lysine specific demethylase 1 (LSD1) and potent inducers of leukemic cell differentiation. European Journal of Medicinal Chemistry, 2018, 144, 52-67.	5.5	30
53	Loperamide, pimozide, and STF-62247 trigger autophagy-dependent cell death in glioblastoma cells. Cell Death and Disease, 2018, 9, 994.	6.3	49
54	Different Response of Ptch Mutant and Ptch Wildtype Rhabdomyosarcoma Toward SMO and PI3K Inhibitors. Frontiers in Oncology, 2018, 8, 396.	2.8	11

#	Article	IF	Citations
55	Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. Journal of Clinical Investigation, 2018, 128, 3341-3355.	8.2	406
56	BCL-2 selective inhibitor ABT-199 primes rhabdomyosarcoma cells to histone deacetylase inhibitor-induced apoptosis. Oncogene, 2018, 37, 5325-5339.	5.9	29
57	AT 101 induces early mitochondrial dysfunction and HMOX1 (heme oxygenase 1) to trigger mitophagic cell death in glioma cells. Autophagy, 2018, 14, 1693-1709.	9.1	79
58	Regulation of the antiapoptotic protein cFLIP by the glucocorticoid Dexamethasone in ALL cells. Oncotarget, 2018, 9, 16521-16532.	1.8	3
59	Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nature Microbiology, 2017, 2, 17066.	13.3	145
60	Concomitant epigenetic targeting of LSD1 and HDAC synergistically induces mitochondrial apoptosis in rhabdomyosarcoma cells. Cell Death and Disease, 2017, 8, e2879-e2879.	6.3	46
61	Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Biochemical Pharmacology, 2017, 140, 41-52.	4.4	122
62	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230
63	Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 2017, 171, 273-285.	28.9	4,081
64	Smac mimetics and type II interferon synergistically induce necroptosis in various cancer cell lines. Cancer Letters, 2017, 410, 228-237.	7.2	36
65	Identification of a synergistic combination of Smac mimetic and Bortezomib to trigger cell death in B-cell non-Hodgkin lymphoma cells. Cancer Letters, 2017, 405, 63-72.	7.2	21
66	Sorafenib tosylate inhibits directly necrosome complex formation and protects in mouse models of inflammation and tissue injury. Cell Death and Disease, 2017, 8, e2904-e2904.	6.3	69
67	A Bak-dependent mitochondrial amplification step contributes to Smac mimetic/glucocorticoid-induced necroptosis. Cell Death and Differentiation, 2017, 24, 83-97.	11.2	47
68	Interference with the HSF1/HSP70/BAG3 Pathway Primes Glioma Cells to Matrix Detachment and BH3 Mimetic–Induced Apoptosis. Molecular Cancer Therapeutics, 2017, 16, 156-168.	4.1	57
69	Targeting redox homeostasis in rhabdomyosarcoma cells: GSH-depleting agents enhance auranofin-induced cell death. Cell Death and Disease, 2017, 8, e3067-e3067.	6.3	43
70	The Smac Mimetic BV6 Improves NK Cell-Mediated Killing of Rhabdomyosarcoma Cells by Simultaneously Targeting Tumor and Effector Cells. Frontiers in Immunology, 2017, 8, 202.	4.8	18
71	Autophagy in Cancer Therapy. Frontiers in Oncology, 2017, 7, 128.	2.8	91
72	Manatee invariants reveal functional pathways in signaling networks. BMC Systems Biology, 2017, 11, 72.	3.0	9

#	Article	IF	Citations
73	Osteosarcoma cells with genetic signatures of BRCAness are susceptible to the PARP inhibitor talazoparib alone or in combination with chemotherapeutics. Oncotarget, 2017, 8, 48794-48806.	1.8	70
74	Eribulin alone or in combination with the PLK1 inhibitor BI 6727 triggers intrinsic apoptosis in Ewing sarcoma cell lines. Oncotarget, 2017, 8, 52445-52456.	1.8	8
75	Generation and characterization of ErbB2-CAR-engineered cytokine-induced killer cells for the treatment of high-risk soft tissue sarcoma in children. Oncotarget, 2017, 8, 66137-66153.	1.8	34
76	Sorafenib inhibits therapeutic induction of necroptosis in acute leukemia cells. Oncotarget, 2017, 8, 68208-68220.	1.8	25
77	IAPs and Resistance to Death Receptors in Cancer. Resistance To Targeted Anti-cancer Therapeutics, 2017, , 59-77.	0.1	0
78	RSL3 and Erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death. Oncotarget, 2016, 7, 63779-63792.	1.8	50
79	Editorial: Biology-Driven Targeted Therapy of Pediatric Soft-Tissue and Bone Tumors: Current Opportunities and Future Challenges. Frontiers in Oncology, 2016, 6, 39.	2.8	2
80	Synergistic induction of apoptosis by a poloâ€like kinase 1 inhibitor and microtubuleâ€interfering drugs in <scp>E</scp> wing sarcoma cells. International Journal of Cancer, 2016, 138, 497-506.	5.1	26
81	Reactive oxygen species contribute toward Smac mimetic/temozolomide-induced cell death in glioblastoma cells. Anti-Cancer Drugs, 2016, 27, 953-959.	1.4	7
82	Smac mimetic sensitizes renal cell carcinoma cells to interferon- \hat{l}_{\pm} -induced apoptosis. Cancer Letters, 2016, 375, 1-8.	7.2	10
83	Next-generation personalised medicine for high-risk paediatric cancer patients – The INFORM pilot study. European Journal of Cancer, 2016, 65, 91-101.	2.8	262
84	Identification of a novel oxidative stress induced cell death by Sorafenib and oleanolic acid in human hepatocellular carcinoma cells. Biochemical Pharmacology, 2016, 118, 9-17.	4.4	32
85	Arsenic trioxide induces Noxa-dependent apoptosis in rhabdomyosarcoma cells and synergizes with antimicrotubule drugs. Cancer Letters, 2016, 381, 287-295.	7.2	17
86	USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive Bâ€cell lymphoma. EMBO Molecular Medicine, 2016, 8, 851-862.	6.9	50
87	Molecular features of the cytotoxicity of an NHE inhibitor: Evidence of mitochondrial alterations, ROS overproduction and DNA damage. BMC Cancer, 2016, 16, 851.	2.6	13
88	Smac mimetic triggers necroptosis in pancreatic carcinoma cells when caspase activation is blocked. Cancer Letters, 2016, 380, 31-38.	7.2	60
89	Sensitization of acute lymphoblastic leukemia cells for LCL161-induced cell death by targeting redox homeostasis. Biochemical Pharmacology, 2016, 105, 14-22.	4.4	23
90	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701

#	Article	IF	Citations
91	Regulation of necroptosis signaling and cell death by reactive oxygen species. Biological Chemistry, 2016, 397, 657-660.	2.5	72
92	Cotreatment with Smac mimetics and demethylating agents induces both apoptotic and necroptotic cell death pathways in acute lymphoblastic leukemia cells. Cancer Letters, 2016, 375, 127-132.	7.2	28
93	Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells?., 2016, 157, 43-64.		36
94	Mitochondria, redox signaling and cell death in cancer. Biological Chemistry, 2016, 397, 583-583.	2.5	4
95	Smac mimetic induces cell death in a large proportion of primary acute myeloid leukemia samples, which correlates with defined molecular markers. Oncotarget, 2016, 7, 49539-49551.	1.8	12
96	Polo-like kinase 1 inhibition sensitizes neuroblastoma cells for vinca alkaloid-induced apoptosis. Oncotarget, 2016, 7, 8700-8711.	1.8	14
97	Cooperative TRAIL production mediates IFNα/Smac mimetic-induced cell death in TNFα-resistant solid cancer cells. Oncotarget, 2016, 7, 3709-3725.	1.8	18
98	Targeting inhibitor of apoptosis proteins by <scp>S</scp> mac mimetic elicits cell death in poor prognostic subgroups of chronic lymphocytic leukemia. International Journal of Cancer, 2015, 137, 2959-2970.	5.1	17
99	The SMAC mimetic BV6 sensitizes colorectal cancer cells to ionizing radiation by interfering with DNA repair processes and enhancing apoptosis. Radiation Oncology, 2015, 10, 198.	2.7	27
100	Hedgehog Inhibitors in Rhabdomyosarcoma: A Comparison of Four Compounds and Responsiveness of Four Cell Lines. Frontiers in Oncology, 2015, 5, 130.	2.8	21
101	Oncogenic RAS Mutants Confer Resistance of RMS13 Rhabdomyosarcoma Cells to Oxidative Stress-Induced Ferroptotic Cell Death. Frontiers in Oncology, 2015, 5, 131.	2.8	71
102	Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells. Cancer Letters, 2015, 366, 32-43.	7.2	51
103	Targeting IAP proteins in combination with radiotherapy. Radiation Oncology, 2015, 10, 105.	2.7	14
104	Redox regulation of Smac mimetic-induced cell death. Molecular and Cellular Oncology, 2015, 2, e1000697.	0.7	0
105	Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nature Communications, 2015, 6, 8940.	12.8	242
106	Promises and Challenges of Smac Mimetics as Cancer Therapeutics. Clinical Cancer Research, 2015, 21, 5030-5036.	7.0	152
107	Smac Mimetic-Induced Upregulation of CCL2/MCP-1 Triggers Migration and Invasion of Glioblastoma Cells and Influences the Tumor Microenvironment in a Paracrine Manner. Neoplasia, 2015, 17, 481-489.	5. 3	28
108	Targeting extrinsic apoptosis in cancer: Challenges and opportunities. Seminars in Cell and Developmental Biology, 2015, 39, 20-25.	5.0	84

#	Article	IF	CITATIONS
109	Smac mimetics as IAP antagonists. Seminars in Cell and Developmental Biology, 2015, 39, 132-138.	5.0	66
110	Safety and tolerability of TRAIL receptor agonists in cancer treatment. European Journal of Clinical Pharmacology, 2015, 71, 525-527.	1.9	23
111	Dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 synergizes with chloroquine to induce apoptosis in embryonal rhabdomyosarcoma. Cancer Letters, 2015, 360, 1-9.	7.2	11
112	Eribulin synergizes with Polo-like kinase 1 inhibitors to induce apoptosis in rhabdomyosarcoma. Cancer Letters, 2015, 365, 37-46.	7.2	25
113	Smac mimetic and oleanolic acid synergize to induce cell death in human hepatocellular carcinoma cells. Cancer Letters, 2015, 365, 47-56.	7.2	32
114	PARP Inhibitors Sensitize Ewing Sarcoma Cells to Temozolomide-Induced Apoptosis via the Mitochondrial Pathway. Molecular Cancer Therapeutics, 2015, 14, 2818-2830.	4.1	52
115	Targeting apoptosis for anticancer therapy. Seminars in Cancer Biology, 2015, 31, 84-88.	9.6	174
116	Identification of a novel synthetic lethality of combined inhibition of hedgehog and PI3K signaling in rhabdomyosarcoma. Oncotarget, 2015, 6, 8722-8735.	1.8	46
117	JNJ-26481585 primes rhabdomyosarcoma cells for chemotherapeutics by engaging the mitochondrial pathway of apoptosis. Oncotarget, 2015, 6, 37836-37851.	1.8	17
118	Differential role of RIP1 in Smac mimetic-mediated chemosensitization of neuroblastoma cells. Oncotarget, 2015, 6, 41522-41534.	1.8	7
119	Inhibitor of Apoptosis Proteins in Pediatric Leukemia: Molecular Pathways and Novel Approaches to Therapy. Frontiers in Oncology, 2014, 4, 3.	2.8	7
120	Regulation of cancer stem-like cell differentiation by Smac mimetics. Molecular and Cellular Oncology, 2014, 1, e960769.	0.7	1
121	Molecular Pathways: Targeting Inhibitor of Apoptosis Proteins in Cancer—From Molecular Mechanism to Therapeutic Application. Clinical Cancer Research, 2014, 20, 289-295.	7.0	78
122	Targeting Inhibitor of Apoptosis Proteins for Cancer Therapy: A Double-Edge Sword?. Journal of Clinical Oncology, 2014, 32, 3190-3191.	1.6	13
123	SMAC Mimetic BV6 Enables Sensitization of Resistant Tumor Cells but also Affects Cytokine-Induced Killer (CIK) Cells: A Potential Challenge for Combination Therapy. Frontiers in Pediatrics, 2014, 2, 75.	1.9	14
124	Chemosensitization of rhabdomyosarcoma cells by the histone deacetylase inhibitor SAHA. Cancer Letters, 2014, 351, 50-58.	7.2	33
125	Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis. Cancer Letters, 2014, 344, 101-109.	7.2	68
126	Synergistic interaction of Smac mimetic and IFN \hat{l} ± to trigger apoptosis in acute myeloid leukemia cells. Cancer Letters, 2014, 355, 224-231.	7.2	33

#	Article	IF	CITATIONS
127	Therapeutic exploitation of necroptosis for cancer therapy. Seminars in Cell and Developmental Biology, 2014, 35, 51-56.	5.0	80
128	Molecular Pathways: Targeting Death Receptors and Smac Mimetics. Clinical Cancer Research, 2014, 20, 3915-3920.	7.0	24
129	The pleiotropic profile of the indirubin derivative 6BIO overcomes TRAIL resistance in cancer. Biochemical Pharmacology, 2014, 91, 157-167.	4.4	19
130	Tumor-Necrosis-Factor-Related Apoptosis-Inducing Ligand (TRAIL). Advances in Experimental Medicine and Biology, 2014, 818, 167-180.	1.6	31
131	Synthetic lethality by co-targeting mitochondrial apoptosis and PI3K/Akt/mTOR signaling. Mitochondrion, 2014, 19, 85-87.	3.4	40
132	Cross Talk Between Cell Death Regulation and Metabolism. Methods in Enzymology, 2014, 542, 81-90.	1.0	6
133	Smac mimetic and glucocorticoids synergize to induce apoptosis in childhood ALL by promoting ripoptosome assembly. Blood, 2014, 124, 240-250.	1.4	42
134	Hypoxia Enhances the Antiglioma Cytotoxicity of B10, a Glycosylated Derivative of Betulinic Acid. PLoS ONE, 2014, 9, e94921.	2.5	13
135	Targeting c-FLICE-like inhibitory protein (CFLAR) in cancer. Expert Opinion on Therapeutic Targets, 2013, 17, 195-201.	3.4	38
136	Strategies to Overcome TRAIL Resistance in Cancer. Resistance To Targeted Anti-cancer Therapeutics, 2013, , 157-166.	0.1	0
137	Regulation of apoptosis pathways in cancer stem cells. Cancer Letters, 2013, 338, 168-173.	7.2	56
138	Targeting apoptosis pathways in childhood malignancies. Cancer Letters, 2013, 332, 369-373.	7.2	7
139	Synthetic lethal interaction between PI3K/Akt/mTOR and Ras/MEK/ERK pathway inhibition in rhabdomyosarcoma. Cancer Letters, 2013, 337, 200-209.	7.2	60
140	Pan-Mammalian Target of Rapamycin (mTOR) Inhibitor AZD8055 Primes Rhabdomyosarcoma Cells for ABT-737-induced Apoptosis by Down-regulating Mcl-1 Protein. Journal of Biological Chemistry, 2013, 288, 35287-35296.	3.4	57
141	Harnessing Death Receptor Signaling for Cancer Treatment. , 2013, , 281-301.		0
142	GDC-0941 enhances the lysosomal compartment via TFEB and primes glioblastoma cells to lysosomal membrane permeabilization and cell death. Cancer Letters, 2013, 329, 27-36.	7.2	29
143	Editorial. Cancer Letters, 2013, 332, 132.	7.2	0
144	Modulation of mitochondrial apoptosis by PI3K inhibitors. Mitochondrion, 2013, 13, 195-198.	3.4	63

#	Article	IF	CITATIONS
145	The dual PI3K/mTOR inhibitor NVPâ€BEZ235 and chloroquine synergize to trigger apoptosis <i>via</i> mitochondrialâ€lysosomal crossâ€talk. International Journal of Cancer, 2013, 132, 2682-2693.	5.1	72
146	Alternative Cell Death Pathways and Cell Metabolism. International Journal of Cell Biology, 2013, 2013, 1-4.	2.5	24
147	How to target apoptosis signaling pathways for the treatment of pediatric cancers. Frontiers in Oncology, 2013, 3, 22.	2.8	5
148	Regulation of cell death in cancerâ€"possible implications for immunotherapy. Frontiers in Oncology, 2013, 3, 29.	2.8	11
149	The mechanism of necroptosis in normal and cancer cells. Cancer Biology and Therapy, 2013, 14, 999-1004.	3.4	102
150	APG350 Induces Superior Clustering of TRAIL Receptors and Shows Therapeutic Antitumor Efficacy Independent of Cross-Linking via Fcl ³ Receptors. Molecular Cancer Therapeutics, 2013, 12, 2735-2747.	4.1	92
151	Chloroquine overcomes resistance of lung carcinoma cells to the dual PI3K/mTOR inhibitor PI103 by lysosome-mediated apoptosis. Anti-Cancer Drugs, 2013, 24, 14-19.	1.4	31
152	Sequential Dosing in Chemosensitization: Targeting the PI3K/Akt/mTOR Pathway in Neuroblastoma. PLoS ONE, 2013, 8, e83128.	2.5	42
153	Cell Death Pathways as Therapeutic Targets in Rhabdomyosarcoma. Sarcoma, 2012, 2012, 1-5.	1.3	14
154	Regulation of Cell Death and Survival by Resveratrol: Implications for Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 874-879.	1.7	9
155	Shifting the balance of mitochondrial apoptosis: therapeutic perspectives. Frontiers in Oncology, 2012, 2, 121.	2.8	21
156	RIP1 Protein-dependent Assembly of a Cytosolic Cell Death Complex Is Required for Inhibitor of Apoptosis (IAP) Inhibitor-mediated Sensitization to Lexatumumab-induced Apoptosis*. Journal of Biological Chemistry, 2012, 287, 38767-38777.	3.4	26
157	Novel Promising IAP Antagonist on the Horizon for Clinical Translation. Journal of Medicinal Chemistry, 2012, 55, 4099-4100.	6.4	6
158	Autophagy and cell death. Autophagy, 2012, 8, 1250-1251.	9.1	30
159	Inhibitor of Apoptosis (IAP) proteins as therapeutic targets for radiosensitization of human cancers. Cancer Treatment Reviews, 2012, 38, 760-766.	7.7	33
160	Targeting IAP proteins for therapeutic intervention in cancer. Nature Reviews Drug Discovery, 2012, 11, 109-124.	46.4	712
161	Ubiquitylation in immune disorders and cancer: from molecular mechanisms to therapeutic implications. EMBO Molecular Medicine, 2012, 4, 545-556.	6.9	42
162	Histone deacetylase (HDAC) inhibitors and regulation of TRAIL-induced apoptosis. Experimental Cell Research, 2012, 318, 1208-1212.	2.6	34

#	Article	IF	CITATIONS
163	Bortezomib Primes Neuroblastoma Cells for TRAIL-Induced Apoptosis by Linking the Death Receptor to the Mitochondrial Pathway. Clinical Cancer Research, 2011, 17, 3204-3218.	7.0	53
164	Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor I±-Induced Necroptosis. Neoplasia, 2011, 13, 971-IN29.	5.3	86
165	Requirement of Nuclear Factor κB for Smac Mimetic–Mediated Sensitization of Pancreatic Carcinoma Cells for Gemcitabine-Induced Apoptosis. Neoplasia, 2011, 13, 1162-IN21.	5.3	35
166	Mitochondria as Therapeutic Targets for the Treatment of Malignant Disease. Antioxidants and Redox Signaling, 2011, 15, 2937-2949.	5.4	62
167	Targeting Apoptosis Signaling Pathways for Anticancer Therapy. Frontiers in Oncology, 2011, 1, 23.	2.8	29
168	Chemosensitization of glioblastoma cells by the histone deacetylase inhibitor MS275. Anti-Cancer Drugs, 2011, 22, 494-499.	1.4	31
169	Identification of c-FLIPL and c-FLIPS as critical regulators of death receptor-induced apoptosis in pancreatic cancer cells. Gut, 2011, 60, 225-237.	12.1	80
170	Bortezomib Primes Glioblastoma, Including Glioblastoma Stem Cells, for TRAIL by Increasing tBid Stability and Mitochondrial Apoptosis. Clinical Cancer Research, 2011, 17, 4019-4030.	7.0	80
171	Targeting Aberrant PI3K/Akt Activation by PI103 Restores Sensitivity to TRAIL-Induced Apoptosis in Neuroblastoma. Clinical Cancer Research, 2011, 17, 3233-3247.	7.0	56
172	NF-κB Is Required for Smac Mimetic-Mediated Sensitization of Glioblastoma Cells for γ-Irradiation–Induced Apoptosis. Molecular Cancer Therapeutics, 2011, 10, 1867-1875.	4.1	63
173	Targeting Apoptosis Signaling in Pancreatic Cancer. Cancers, 2011, 3, 241-251.	3.7	7
174	Novel insights into the synergistic interaction of Bortezomib and TRAIL: tBid provides the link. Oncotarget, 2011, 2, 418-421.	1.8	15
175	Small molecule XIAP inhibitors sensitize childhood acute leukemia cells for CD95â€induced apoptosis. International Journal of Cancer, 2010, 126, 2216-2228.	5.1	32
176	IAP antagonists: promising candidates for cancer therapy. Drug Discovery Today, 2010, 15, 210-219.	6.4	85
177	Resveratrol and derivatives for the prevention and treatment of cancer. Drug Discovery Today, 2010, 15, 757-765.	6.4	213
178	Targeting of XIAP Combined with Systemic Mesenchymal Stem Cell-Mediated Delivery of sTRAIL Ligand Inhibits Metastatic Growth of Pancreatic Carcinoma Cells. Stem Cells, 2010, 28, 2109-2120.	3.2	91
179	Targeting mitochondria for cancer therapy. Nature Reviews Drug Discovery, 2010, 9, 447-464.	46.4	1,389
180	TRAIL-Induced Apoptosis Is Preferentially Mediated via TRAIL Receptor 1 in Pancreatic Carcinoma Cells and Profoundly Enhanced by XIAP Inhibitors. Clinical Cancer Research, 2010, 16, 5734-5749.	7.0	71

#	Article	lF	CITATIONS
181	Evasion of Apoptosis as a Cellular Stress Response in Cancer. International Journal of Cell Biology, 2010, 2010, 1-6.	2.5	131
182	Modulation of Apoptosis by Natural Products for Cancer Therapy. Planta Medica, 2010, 76, 1075-1079.	1.3	171
183	Targeting X-Linked Inhibitor of Apoptosis Protein to Increase the Efficacy of Endoplasmic Reticulum Stress-Induced Apoptosis for Melanoma Therapy. Journal of Investigative Dermatology, 2010, 130, 2250-2258.	0.7	33
184	Cellular Stress Responses: Cell Survival and Cell Death. International Journal of Cell Biology, 2010, 2010, 1-23.	2.5	984
185	Exploiting mitochondrial apoptosis for the treatment of cancer. Mitochondrion, 2010, 10, 598-603.	3.4	34
186	Apoptosis signaling in cancer stem cells. International Journal of Biochemistry and Cell Biology, 2010, 42, 31-38.	2.8	67
187	Therapeutic Exploitation of Apoptosis and Autophagy for Glioblastoma. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 438-449.	1.7	50
188	Small Molecule XIAP Inhibitors Enhance TRAIL-Induced Apoptosis and Antitumor Activity in Preclinical Models of Pancreatic Carcinoma. Cancer Research, 2009, 69, 2425-2434.	0.9	140
189	A Novel Paradigm to Trigger Apoptosis in Chronic Lymphocytic Leukemia. Cancer Research, 2009, 69, 8977-8986.	0.9	55
190	Apoptosis pathways and their therapeutic exploitation in pancreatic cancer. Journal of Cellular and Molecular Medicine, 2009, 13, 1221-1227.	3.6	62
191	Identification of a novel proâ€apopotic function of NFâ€PB in the DNA damage response. Journal of Cellular and Molecular Medicine, 2009, 13, 4239-4256.	3.6	56
192	Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discovery Today, 2009, 14, 885-890.	6.4	181
193	Tumor resistance to apoptosis. International Journal of Cancer, 2009, 124, 511-515.	5.1	510
194	Betulinic acid: A natural product with anticancer activity. Molecular Nutrition and Food Research, 2009, 53, 140-146.	3.3	129
195	Cell death in hematological tumors. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 409-423.	4.9	39
196	Exploiting apoptosis pathways for the treatment of pediatric cancers. Pediatric Blood and Cancer, 2009, 53, 533-536.	1.5	14
197	Therapeutic opportunities for counteracting apoptosis resistance in childhood leukaemia. British Journal of Haematology, 2009, 145, 441-454.	2.5	21
198	Inhibitor of Apoptosis (IAP) Proteins: Novel Insights into the Cancer-Relevant Targets for Cell Death Induction. ACS Chemical Biology, 2009, 4, 499-501.	3.4	13

#	Article	IF	Citations
199	Caspase-8 in cancer biology and therapy. Cancer Letters, 2009, 281, 128-133.	7.2	162
200	Small-Molecule XIAP Inhibitors Enhance \hat{I}^3 -Irradiation-Induced Apoptosis in Glioblastoma. Neoplasia, 2009, 11, 743-W9.	5.3	98
201	Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2–mediated resistance. Blood, 2009, 113, 1710-1722.	1.4	127
202	A Novel Paradigm to Trigger Apoptosis in Chronic Lymphocytic Leukemia Blood, 2009, 114, 731-731.	1.4	0
203	Deregulated Apoptotic Pathways Point to Effectiveness of IAP Inhibitor Therapy in Acute Myeloid Leukemia Blood, 2009, 114, 1275-1275.	1.4	O
204	XIAP Inhibitors Present a Promising New Strategy to Sensitize Childhood Acute Leukemia Cells for Chemotherapy-Induced Apoptosis Blood, 2009, 114, 3791-3791.	1.4	0
205	Betulinic Acid for Cancer Treatment and Prevention. International Journal of Molecular Sciences, 2008, 9, 1096-1107.	4.1	267
206	Apoptosis Signaling Pathways in Anticancer Therapy. Current Cancer Therapy Reviews, 2008, 4, 14-20.	0.3	4
207	Targeting Apoptosis Resistance in Rhabdomyosarcoma. Current Cancer Drug Targets, 2008, 8, 536-544.	1.6	18
208	Phosphatidylinositol 3-Kinase Inhibition Broadly Sensitizes Glioblastoma Cells to Death Receptor– and Drug-Induced Apoptosis. Cancer Research, 2008, 68, 6271-6280.	0.9	137
209	Targeting XIAP Bypasses Bcl-2–Mediated Resistance to TRAIL and Cooperates with TRAIL to Suppress Pancreatic Cancer Growth ⟨i⟩In vitro⟨ i⟩ and ⟨i⟩In vivo⟨ i⟩. Cancer Research, 2008, 68, 7956-7965.	0.9	143
210	Modulation of TRAIL-Induced Apoptosis by HDAC Inhibitors. Current Cancer Drug Targets, 2008, 8, 132-140.	1.6	67
211	Targeting Inhibitor of Apoptosis Proteins (IAPs) for Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 533-539.	1.7	32
212	HIF-1-regulated glucose metabolism in the control of apoptosis signaling. Expert Review of Endocrinology and Metabolism, 2008, 3, 303-308.	2.4	2
213	Small Molecule XIAP Inhibitors Cooperate with TRAIL to Trigger Apoptosis in Childhood Acute Leukemia Cells and Overcome Bcl-2-Mediated Resistance. Blood, 2008, 112, 857-857.	1.4	2
214	Inhibitor of apoptosis proteins as targets for anticancer therapy. Expert Review of Anticancer Therapy, 2007, 7, 1255-1264.	2.4	59
215	HIF-1-Regulated Glucose Metabolism: A Key to Apoptosis Resistance?. Cell Cycle, 2007, 6, 790-792.	2.6	83
216	Activation of Akt Predicts Poor Outcome in Neuroblastoma. Cancer Research, 2007, 67, 735-745.	0.9	218

#	Article	IF	Citations
217	Apoptosis Induced by Extracts of Helleborus Niger in Different Lymphoma and Leukemia Cell Lines and Primary Lymphoblasts of Children with ALL Is Independent of Smac-Overexpression and Executed Via the Mitochondrial Pathway Blood, 2007, 110, 4215-4215.	1.4	0
218	Targeting Inhibitor of Apoptosis Proteins (IAPs) for Diagnosis and Treatment of Human Diseases. Recent Patents on Anti-Cancer Drug Discovery, 2006, $1,81-89$.	1.6	20
219	Modulation of apoptosis signaling for cancer therapy. Archivum Immunologiae Et Therapiae Experimentalis, 2006, 54, 173-175.	2.3	14
220	Resveratrol modulation of signal transduction in apoptosis and cell survival: A mini-review. Cancer Detection and Prevention, 2006, 30, 217-223.	2.1	132
221	Loss of Caspase-8 Expression Does Not Correlate with MYCN Amplification, Aggressive Disease, or Prognosis in Neuroblastoma. Cancer Research, 2006, 66, 10016-10023.	0.9	51
222	Inhibition of clonogenic tumor growth: a novel function of Smac contributing to its antitumor activity. Oncogene, 2005, 24, 7190-7202.	5.9	40
223	Sensitization for γ-Irradiation–Induced Apoptosis by Second Mitochondria-Derived Activator of Caspase. Cancer Research, 2005, 65, 10502-10513.	0.9	64
224	HDAC inhibitors: Double edge sword for TRAIL cancer therapy?. Cancer Biology and Therapy, 2005, 4, 1113-1115.	3.4	14
225	Sensitization for Anticancer Drug-Induced Apoptosis by Betulinic Acid. Neoplasia, 2005, 7, 162-170.	5. 3	87
226	Targeting Apoptosis Pathways in Cancer Therapy. Current Cancer Drug Targets, 2004, 4, 569-576.	1.6	158
227	Modulation of TRAIL Signaling for Cancer Therapy. Vitamins and Hormones, 2004, 67, 275-290.	1.7	28
228	Sensitization for anticancer drug-induced apoptosis by the chemopreventive agent resveratrol. Oncogene, 2004, 23, 6702-6711.	5.9	193
229	Cooperation of betulinic acid and TRAIL to induce apoptosis in tumor cells. Oncogene, 2004, 23, 7611-7620.	5.9	67
230	Exploiting death receptor signaling pathways for tumor therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2004, 1705, 27-41.	7.4	36
231	Apoptosis Signaling in Tumor Therapy. Annals of the New York Academy of Sciences, 2004, 1028, 150-156.	3.8	78
232	Sensitization for Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis by the Chemopreventive Agent Resveratrol. Cancer Research, 2004, 64, 337-346.	0.9	250
233	Signaling through death receptors in cancer therapy. Current Opinion in Pharmacology, 2004, 4, 327-332.	3.5	40
234	TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-κB. Oncogene, 2003, 22, 3842-3852.	5.9	262

#	Article	IF	Citations
235	Apoptosis pathways in neuroblastoma therapy. Cancer Letters, 2003, 197, 131-135.	7.2	40
236	Death Receptor Signaling in Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2003, 3, 253-262.	7.0	38
237	IFN \hat{I}^3 sensitizes for apoptosis by upregulating caspase-8 expression through the Stat1 pathway. Oncogene, 2002, 21, 2295-2308.	5.9	247
238	Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene, 2002, 21, 2283-2294.	5.9	358
239	Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nature Medicine, 2002, 8, 808-815.	30.7	741
240	Cell type specific involvement of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncogene, 2001, 20, 1063-1075.	5.9	220
241	Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene, 2001, 20, 5865-5877.	5.9	410
242	Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors. Medical and Pediatric Oncology, 2000, 35, 616-618.	1.0	132
243	Apoptotic responsiveness of the Ewing's sarcoma family of tumours to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). International Journal of Cancer, 2000, 88, 252-259.	5.1	56
244	MycN sensitizes neuroblastoma cells for drug-triggered apoptosis. Medical and Pediatric Oncology, 2000, 35, 582-584.	1.0	24
245	Functional CD95 ligand and CD95 death-inducing signaling complex in activation-induced cell death and doxorubicin-induced apoptosis in leukemic T cells. Blood, 2000, 95, 301-308.	1.4	115
246	Functional CD95 ligand and CD95 death-inducing signaling complex in activation-induced cell death and doxorubicin-induced apoptosis in leukemic T cells. Blood, 2000, 95, 301-308.	1.4	10
247	Induction of CD95 ligand and apoptosis by doxorubicin is modulated by the redox state in chemosensitive- and drug-resistant tumor cells. Cell Death and Differentiation, 1999, 6, 471-480.	11.2	80
248	MycN sensitizes neuroblastoma cells for drug-induced apoptosis. Oncogene, 1999, 18, 1479-1486.	5.9	118
249	Betulinic acid: A new cytotoxic agent against malignant brain-tumor cells. , 1999, 82, 435-441.		171
250	Activation of Mitochondria and Release of Mitochondrial Apoptogenic Factors by Betulinic Acid. Journal of Biological Chemistry, 1998, 273, 33942-33948.	3.4	323
251	Activation of the CD95 (APO-1/Fas) pathway in drug- and \hat{I}^3 -irradiation-induced apoptosis of brain tumor cells. Cell Death and Differentiation, 1998, 5, 884-893.	11.2	122
252	MycN and IFNÎ ³ cooperate in apoptosis of human neuroblastoma cells. Oncogene, 1998, 17, 339-346.	5.9	91

#	Article	IF	CITATIONS
253	Chemosensitivity of solid tumor cellsin vitro is related to activation of the CD95 system., 1998, 76, 105-114.		141
254	Chemosensitivity of solid tumor cells in vitro is related to activation of the CD95 system. International Journal of Cancer, 1998, 76, 105-114.	5.1	4
255	IFN \hat{I}^3 sensitizes for apoptosis by upregulating caspase-8 expression through the Stat1 pathway. , 0, .		2
256	Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. , 0, .		2
257	Hereditary Ovarian and Endometrial Cancer. , 0, , 207-214.		O
258	Wilms and Rhabdoid Tumors of the Kidney. , 0, , 231-243.		0
259	Hereditary Renal Tumors of the Adult. , 0, , 245-256.		O
260	Gastrointestinal Polyposis Syndromes. , 0, , 257-280.		0
261	Hereditary Gastric Cancer. , 0, , 309-343.		O
262	Genetic Counseling for Hereditary Tumors. , 0, , 467-485.		0
263	Hereditary Cancer in the Head and Neck. , 0, , 163-168.		0