John D Reynolds

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/2614205/publications.pdf
Version: 2024-02-01

1 Emergent trophic interactions following the Chinook salmon invasion of Patagonia. Ecosphere, 2022, 13,

Nonâ€native Chinook salmon add nutrient subsidies and functional novelty to Patagonian streams. Freshwater Biology, 2021, 66, 495-508.

Sea-louse abundance on salmon farms in relation to parasite-control policy and climate change. ICES Journal of Marine Science, 2021, 78, 377-387.

Bias in selfâ $€_{\text {reported parasite }}$ data from the salmon farming industry. Ecological Applications, 2021, 31, e02226.

Portfolio simplification arising from a century of change in salmon population diversity and artificial production. Journal of Applied Ecology, 2021, 58, 1477-1486.
$4.0 \quad 13$

Salmon subsidies predict territory size and habitat selection of an avian insectivore. PLoS ONE, 2021, 16, e0254314.

Effects of spawning Pacific salmon on terrestrial invertebrates: Insects near spawning habitat are
7 isotopically enriched with nitrogenâ€ 5 but display no differences in body size. Ecology and Evolution, 2021, 11, 12728-12738.

Links between fluctuations in sockeye salmon abundance and riparian forest productivity identified by remote sensing. Ecosphere, 2021, 12, e03699.

Marine subsidy promotes spatial and dietary niche variation in an omnivore, the Keenâ $\epsilon^{T M}$ s mouse (<i>Peromyscus keeni</i>). Ecology and Evolution, 2021, 11, 17700-17722.

Spawning salmon density influences fruit production of salmonberry (<i>Rubus spectabilis</i>). Ecosphere, 2020, 11, e03282.

Prioritizing conservation actions for Pacific salmon in Canada. Journal of Applied Ecology, 2020, 57,
1688-1699.

Marine subsidies mediate patterns in avian island biogeography. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200108.

Relationships between Pacific salmon and aquatic and terrestrial ecosystems: implications for ecosystemâ€based management. Ecology, 2020, 101, e03060.

Salmon abundance and patterns of forest greenness as measured by satellite imagery. Science of the Total Environment, 2020, 725, 138448.

Genetics of centuryâ€old fish scales reveal population patterns of decline. Conservation Letters, 2019,
12, el2669.

Salmon increase forest bird abundance and diversity. PLoS ONE, 2019, 14, e0210031.
2.5

Landscape Structure and Species Interactions Drive the Distribution of Salmon Carcasses in Coastal
Watersheds. Frontiers in Ecology and Evolution, 2019, 7, .
2.2

Species-specific wet-dry mass calibrations for dominant Northeastern Pacific Ocean macroalgae and
seagrass. Aquatic Botany, 2019, 152, 27-31.

19 Hallmarks of science missing from North American wildlife management. Science Advances, 2018, 4,
eaao0167.

Habitat features mediate selective consumption of salmon by bears. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 955-963.

The roles of extrinsic and intrinsic factors in the freshwater lifeâ€history dynamics of a migratory salmonid. Ecosphere, 2018, 9, e02397.

From salmon to salmonberry: The effects of salmonâ€derived nutrients on the stomatal density of leaves of the nitriphilic shrub <i>Rubus spectabilis</i>. Functional Ecology, 2018, 32, 2625-2633.
3.6

Quantifying the known unknowns: estimating maximum intrinsic rate of population increase in the face of uncertainty. ICES Journal of Marine Science, 2018, 75, 953-963.

Oust the louse: leaping behaviour removes sea lice from wild juvenile sockeye salmon <scp><i>Oncorhynchus nerka</i></scp>. Journal of Fish Biology, 2018, 93, 263-271.

Heavy sea louse infection is associated with decreased stomach fullness in wild juvenile sockeye salmon. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 1587-1595.

Selectivity matters: Rules of thumb for management of plateâ€sized, sexâ€changing fish in the live reef food fish trade. Fish and Fisheries, 2017, 18, 821-836.

Effects of habitat features on size-biased predation on salmon by bears. Oecologia, 2017, 184, 101-114.
2.0

Canadaâ $€^{T M}$ s Wild Salmon Policy: an assessment of conservation progress in British Columbia. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 1507-1518.

29 Changes in body size of Canadian Pacific salmon over six decades. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 191-201.

Costs of reproduction can explain the correlated evolution of semelparity and egg size: theory and a test with salmon. Ecology Letters, 2016, 19, 687-696.

Ecology of conflict: marine food supply affects human-wildlife interactions on land. Scientific Reports, 2016, 6, 25936.

Ten principles from evolutionary ecology essential for effective marine conservation. Ecology and Evolution, 2016, 6, 2125-2138.

Maximum intrinsic rate of population increase in sharks, rays, and chimaeras: the importance of
survival to maturity. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 1159-1163.

Sneaker Males Affect Fighter Male Body Size and Sexual Size Dimorphism in Salmon. American
Naturalist, 2016, 188, 264-271.

Salmon nutrients are associated with the phylogenetic dispersion of riparian floweringâ€plant assemblages. Ecology, 2016, 97, 450-460.

Effects of subsidies from spawning chum and pink salmon on juvenile coho salmon body size and migration timing. Ecosphere, 2015, 6, art209-art209.

38 Quantifying the effects of stream habitat on populations of breeding Pacific salmon. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1469-1476.
1.45
Sea lice, sockeye salmon, and foraging competition: lousy fish are lousy competitors. Canadian

Journal of Fisheries and Aquatic Sciences, 2015, 72, 1113-1120. \begin{tabular}{l}
Using watershed characteristics to inform cost-effective stream temperature monitoring. Aquatic

$40 \quad$| Ecology, 2015, 49, 373-388. |
| :--- |

\end{tabular}

$1.4 \quad 37$

Ecology, 2015, 49, 373-388.
1.5

2
Location Is Everything: Evaluating the Effects of Terrestrial and Marine Resource Subsidies on an
Estuarine Bivalve. PLoS ONE, 2015, 10, e0125167.
$2.5 \quad 5$
Estuarine Bivalve. PLoS ONE, 2015, 10, e0125167.

Opposing forces: Evaluating multiple ecological roles of Pacific salmon in coastal stream ecosystems.
Ecosphere, 2014, 5, art157.
2.2

14

43 Life history and environmental influences on population dynamics in sockeye salmon. Canadian
Journal of Fisheries and Aquatic Sciences, 2014, 71, 1198-1208.
1.4

8

44 Principles for ensuring healthy and productive freshwater ecosystems that support sustainable

fisheries. Environmental Reviews, 2014, 22, 110-134.

Potential loss and rehabilitation of stream longitudinal connectivity: fish populations in urban
streams with culverts. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 1805-1816.

Effects of salmon on the diet and condition of stream-resident sculpins. Canadian Journal of Fisheries
and Aquatic Sciences, 2014, 71, 521-532.
1.4

24
$47 \quad$ When Science-Based Management Isn't. Science, 2014, 343, 1311-1311. 12.6 21
48 Movers and shakers: nutrient subsidies and benthic disturbance predict biofilm biomass and stableisotope signatures in coastal streams. Freshwater Biology, 2014, 59, 1361-1377.
2.4

49 From earth and ocean: investigating the importance of crossâ€ecosystem resource linkages to a mobile estuarine consumer. Ecosphere, 2014, 5, 1-23.

50 Time-Delayed Subsidies: Interspecies Population Effects in Salmon. PLoS ONE, 2014, 9, e98951.
2.5

10

> Ecological links between salmon, large carnivore predation, and scavenging birds. Journal of Avian
> Biology, 2013, 44, 009-016.
1.2

19

Salmon subsidize an escape from a size spectrum. Proceedings of the Royal Society B: Biological
Sciences, 2013, 280, 20122433.
2.6

35

53
 Prey Selectivity of Fraser River Sockeye Salmon during Early Marine Migration in British Columbia.
 Transactions of the American Fisheries Society, 2013, 142, 1126-1133.

1.4

14
Confronting Uncertainty in Wildlife Management: Performance of Grizzly Bear Management. PLoS
ONE, 2013, 8, e78041.

ONE, 2013, 8, e78041.

A bleak day for the environment. Nature, 2012, 487, 171-171.
27.8
1.7 Journal of Forest Research, 2012, 42, 908-917.

Meta-analysis at the intersection of evolutionary ecology and conservation. Evolutionary Ecology,
2012, 26, 1237-1252.
1.2

59 Why Spawn in Aggregations?. , 2012, , 57-83.
24

60 Canada's Weakening Aquatic Protection. Science, 2012, 337, 154-154.
12.6

28

61 Costâ€effective variable selection in habitat surveys. Methods in Ecology and Evolution, 2012, 3, 388-396.
5.2

11

Relationships between habitat characteristics and breeding population densities in sockeye salmon
(<i>Oncorhynchus nerka</i>). Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 758-767.

Sea Louse Infection of Juvenile Sockeye Salmon in Relation to Marine Salmon Farms on Canada's West
Coast. PLoS ONE, 2011, 6, e16851.

Relative size-at-sex-change in parrotfishes across the Caribbean: is there variance in a supposed life-history invariant?. Evolutionary Ecology, 2011, 25, 429-446.

65 Impacts of Salmon on Riparian Plant Diversity. Science, 2011, 331, 1609-1612.
$12.6 \quad 176$

Sea to sky: impacts of residual salmon-derived nutrients on estuarine breeding bird communities.
Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3081-3088.

Persistent ecological effects of a salmon-derived nutrient pulse on stream invertebrate communities.
Ecosphere, 2011, 2, art18.

Quantitative Links Between Pacific Salmon and Stream Periphyton. Ecosystems, 2010, 13, 1020-1034.
3.4

38

Sexâ€selective Predation by Threespine Sticklebacks on Sea Lice: A Novel Cleaning Behaviour. Ethology, 2010, 116, 981-989.
5.7

Snake prices and crocodile appetites: Aquatic wildlife supply and demand on Tonle Sap Lake, Cambodia.
Biological Conservation, 2010, 143, 2127-2135.
4.1

27
73 Recent Region-wide Declines in Caribbean Reef Fish Abundance. Current Biology, 2009, 19, 590-595. 238
74 Skates on thin ice. Nature, 2009, 462, 417-417. 27.8
$75 \quad$ Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries,
$2009,10,173-196$.
76 Breeding systems, climate, and the evolution of migration in shorebirds. Behavioral Ecology, 2009, 20,
1026-1033.

Sustained by Snakes? Seasonal Livelihood Strategies and Resource Conservation by Tonle Sap Fishers
1.4
79 Evolutionary consequences of fishing and their implications for salmon. Evolutionary Applications,
$3.1 \quad 145$

80

Links between sex change and fish densities in marine protected areas. Biological Conservation, 2008,
141, 187-197.

4.1
Sexual Conflict and the Evolution of Breeding Systems in Shorebirds. Advances in the Study of
Behavior, 2007, 37, 279-342.
84 Body size, exploitation and conservation of marine organisms. , 2007, , 266-285. 4
SPERM COMPETITION AND SEX CHANGE: A COMPARATIVE ANALYSIS ACROSS FISHES. Evolution;
International lournal of Organic Evolution, 2007, 61, 640-652. 2.3 38Life history correlates of density-dependent recruitment in marine fishes. Canadian Journal of
Comparison of threat and exploitation status in North-East Atlantic marine populations. Journal of
Applied Ecology, 2005, 42, 883-891.

$92 \quad$| Macroecology of live-bearing in fishes: latitudinal and depth range comparisons with egg-laying |
| :--- |
| relatives. Oikos, 2005, 110, 209-218. |

$93 \quad$| Benefits and costs to mussels from ejecting bitterling embryos: a test of the evolutionary equilibrium |
| :--- |
| hypothesis. Animal Behaviour, 2005, 70, 31-37. |

94 ECOLOGY: Population Dynamics: Growing to Extremes. Science, 2005, 309, 567-568.

95	Do tagging experiments tell the truth? Using electronic tags to evaluate conventional tagging data. ICES Journal of Marine Science, 2005, 62, 236-246.	2.5	62
96	Biology of extinction risk in marine fishes. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2337-2344.	2.6	335
97	Life history and ecological correlates of extinction risk in European freshwater fishes. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 854-862.	1.4	98
98	Sexual selection explains Rensch's rule of size dimorphism in shorebirds. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12224-12227.	7.1	238
99	Methods of assessing extinction risk in marine fishes. Fish and Fisheries, 2004, 5, 255-276.	5.3	200

100 Impacts of migratory behaviour on population structure in North Sea plaice. Journal of Animal Ecology, 2004, 73, 377-385.
101 The importance of species interactions in conservation: the endangered European bitterling Rhodeus sericeus and its freshwater mussel hosts. Animal Conservation, 2004, 7, 257-263.
2.9 14102 Marine Fish Population Collapses: Consequences for Recovery and Extinction Risk. BioScience, 2004,54, 297.4.9515
103 Vertical activity patterns of free-swimm
1.939
104 Operational sex ratio and alternative reproductive behaviours in the European bitterling, Rhodeus sericeus. Behavioral Ecology and Sociobiology, 2003, 54, 98-104.1.495Population stability in salmon species: effects of population size and female reproductive allocation.
Migration route and spawning area fidelity by North Sea plaice. Proceedings of the Royal Society B:

Biological Sciences, 2003, 270, 2097-2103. | Evolutionary transitions in parental care and live bearing in vertebrates. Philosophical Transactions |
| :--- |
| 110 |
| of the Royal Society B: Biological Sciences, 2002, 357, 269-281. |

Adjustments of ejaculation rates in response to risk of sperm competition in a fish, the bitterling () Tj ETQqO 00 rgBT/Overlocke 10 Tf 50
Life-history correlates of the evolution of live bearing in fishes. Philosophical Transactions of the
Royal Society B: Biological Sciences, 2002, 357, 259-267.

115	Why do males tolerate sneakers? Tests with the European bitterling, Rhodeus sericeus. Behavioral Ecology and Sociobiology, 2002, 51, 146-152.	1.4	22
116	Mussel ventilation rates as a proximate cue for host selection by bitterling, Rhodeus sericeus. Oecologia, 2002, 131, 473-478.	2.0	37
117	Predicting Extinction Vulnerability in Skates. Conservation Biology, 2002, 16, 440-450.	4.7	269
118	Host species preferences by bitterling, Rhodeus sericeus, spawning in freshwater mussels and consequences for offspring survival. Animal Behaviour, 2002, 63, 1029-1036.	1.9	46
119	Sexual signaling in the European bitterling: females learn the truth by direct inspection of the resource. Behavioral Ecology, 2001, 12, 407-411.	2.2	82
120	Morphometric variability in UK populations of the European lobster. Journal of the Marine Biological Association of the United Kingdom, 2001, 81, 469-474.	0.8	19
121	Fishery Stability, Local Extinctions, and Shifts in Community Structure in Skates. Conservation Biology, 2000, 14, 283-293.	4.7	374

127	Population consequences of reproductive decisions. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1327-1334.	2.6	73
128	Conservation benefits of marine reserves for fish populations. Animal Conservation, 2000, 3, 321-332.	2.9	4
129	Measures of Inequality Are Not Equal. American Naturalist, 1999, 154, 358-382.	2.1	124
130	Oxygen and the Trade-off between Egg Ventilation and Brood Protection in the Common Goby. Behaviour, 1999, 136, 819-832.	0.8	37
131	Female preference for preferred males is reversed under low oxygen conditions in the common goby (Pomatoschistus microps). Behavioral Ecology, 1999, 10, 149-154.	2.2	66
132	Structural change in an exploited fish community: a consequence of differential fishing effects on species with contrasting life histories. Journal of Animal Ecology, 1999, 68, 617-627.	2.8	416
133	The taxonomic distinctness of coastal bottom-dwelling fish communities of the North-east Atlantic. Journal of Animal Ecology, 1999, 68, 769-782.	2.8	153
134	Predicting the Vulnerability of Tropical Reef Fishes to Exploitation with Phylogenies and Life Histories. Conservation Biology, 1999, 13, 1466-1475.	4.7	167
135	Costs of egg ventilation for male common gobies breeding in conditions of low dissolved oxygen. Animal Behaviour, 1999, 57, 181-188.	1.9	108

The effects of sex ratio on sexual competition in the European lobster. Animal Behaviour, 1999, 58, 973-981.
1.953

137 Risk assessments of threatened species. Trends in Ecology and Evolution, 1999, 14, 215-217.
8.7

21

138 The influence of oxygen stress on female choice for male nest structure in the common goby. Animal Behaviour, 1999, 57, 189-196.
1.9

73
139 Potential impacts of gravel extraction on Spanish populations of river blennies Salaria fluviatilis
(Pisces, Blenniidae). Biological Conservation, 1999, 87, 359-367.

Individual mating success, lek stability, and the neglected limitations of statistical power. Animal
1.9

35
Behaviour, 1998, 56, 755-762.

Variation in posing behaviour among fish species visiting cleaning stations. Journal of Fish Biology,
1.6

68
141 1998,53, 256-266.

Effects of phosphate on the reproductive symbiosis between bitterling and freshwater mussels:
implications for conservation. Journal of Applied Ecology, 1998, 35, 575-581.
4.0

28

143 Tropical fish: explosions and extinctions. Trends in Ecology and Evolution, 1998, 13, 475-476.
145 The evolution of parental care in shorebirds: life histories, ecology, and sexual selection. Behavioral 2.2 118 Ecology, 1997, 8, 126-134.
$147 \quad \begin{aligned} & \text { Host Specialisation in } \\ & \text { Oikos, 1997, 78, } 539 .\end{aligned}$ 46
148 463-491. 4.9 88
149 Mutual Mate Choice and Sex Differences in Choosiness. Evolution; International Journal of Organic 2.3 178
150 Animal breeding systems. Trends in Ecology and Evolution, 1996, 11, 68-72.8.7374
$151 \quad$ MUTUAL MATE CHOICE AND SEX DIFFERE 2.3 285
152 Honesty in sexual selection. Nature, 1995, 375, 280-281.27.81
153 Measuring sexual selection. Nature, 1995, 376, 471-471. 27.8 13
154 Variation in Male Mating Success on Leks. American Naturalist, 1995, 145, 633-652.2.171
155 Direct selection on mate choice: female redlip blennies pay more for better mates. Behavioral Ecology, 1995, 6, 175-181. 41
1.9 116
Environmental conditions and male morphology determine alternative mating behaviour in Trinidadian guppies. Animal Behaviour, 1993, 45, 145-152. 156

$2.1 \quad 83$
157 Should Attractive Individuals Court More? Theory and a Test. American Naturalist, 1993, 141, 914-927. 83
2.1
Costs and Benefits of Female Mate Choice: Is There a Lek Paradox?. American Naturalist, 1990, 136,
230-243.2.1288
Mating system and nesting biology of the Redâ€necked Phalarope Phalaropus lobatus: what constrains
160 polyandry?. Ibis, 1987, 129, 225-242.
Sexual selection and spring arrival times of red-necked and Wilson's phalaropes. Behavioral Ecology 161
and Sociobiology, 1986, 18, 303-310.
and Sociobiology, 1986, 18, 303-310.
161
1611.4783
1.9 25
The influence of mating systems on philopatry: a test with polyandrous red-necked phalaropes. Animal
159 Behaviour, 1988, 36, 1788-1795. 25

