Teresa A Milner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2614063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Angiotensin II Infusion Results in Both Hypertension and Increased AMPA CluA1 Signaling in Hypothalamic Paraventricular Nucleus of Male but not Female Mice. Neuroscience, 2022, 485, 129-144.	2.3	2
2	Sex and chronic stress alter the distribution of glutamate receptors within rat hippocampal CA3 pyramidal cells following oxycodone conditioned place preference. Neurobiology of Stress, 2022, 17, 100431.	4.0	2
3	Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue. Nature Biotechnology, 2022, 40, 1082-1092.	17.5	52
4	Estrogen receptors observed at extranuclear neuronal sites and in glia in the nucleus accumbens core and shell of the female rat: Evidence for localization to catecholaminergic and GABAergic neurons. Journal of Comparative Neurology, 2022, 530, 2056-2072.	1.6	12
5	SorCS2 is required for social memory and trafficking of the NMDA receptor. Molecular Psychiatry, 2021, 26, 927-940.	7.9	23
6	Tumor Necrosis Factor α Receptor Type 1 Activation in the Hypothalamic Paraventricular Nucleus Contributes to Glutamate Signaling and Angiotensin II-Dependent Hypertension. Journal of Neuroscience, 2021, 41, 1349-1362.	3.6	17
7	Oxycodone injections not paired with conditioned place preference have little effect on the hippocampal opioid system in female and male rats. Synapse, 2021, 75, e22182.	1.2	3
8	Sex and age influence gonadal steroid hormone receptor distributions relative to estrogen receptor βâ€containing neurons in the mouse hypothalamic paraventricular nucleus. Journal of Comparative Neurology, 2021, 529, 2283-2310.	1.6	10
9	SorCS is highly expressed in the CA2 region of the hippocampus and is enriched in the postsynaptic region. Molecular Psychiatry, 2021, 26, 721-721.	7.9	0
10	Chronic stress differentially alters <scp>mRNA</scp> expression of opioid peptides and receptors in the dorsal hippocampus of female and male rats. Journal of Comparative Neurology, 2021, 529, 2636-2657.	1.6	11
11	NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation. Cancer Discovery, 2021, 11, 2316-2333.	9.4	25
12	Estrogen Receptor β Contributes to Both Hypertension and Hypothalamic Plasticity in a Mouse Model of Peri-Menopause. Journal of Neuroscience, 2021, 41, 5190-5205.	3.6	18
13	Acute Delta 9â€ŧetrahydrocannabinol administration differentially alters the hippocampal opioid system in adult female and male rats. Synapse, 2021, 75, e22218.	1.2	2
14	Kv2.1 expression in giant reticular neurons of the postnatal mouse brain. Journal of Chemical Neuroanatomy, 2021, 117, 102005.	2.1	0
15	Distribution and localization of phosphatidylinositol 5â€phosphate, 4â€kinase alpha and beta in the brain. Journal of Comparative Neurology, 2021, 529, 434-449.	1.6	5
16	Sex differences in the rodent hippocampal opioid system following stress and oxycodone associated learning processes. Pharmacology Biochemistry and Behavior, 2021, 212, 173294.	2.9	9
17	Cocaine- and stress-primed reinstatement of drug-associated memories elicit differential behavioral and frontostriatal circuit activity patterns via recruitment of L-type Ca2+ channels. Molecular Psychiatry, 2020, 25, 2373-2391.	7.9	14
18	Sex and age differentially affect GABAergic neurons in the mouse prefrontal cortex and hippocampus following chronic intermittent hypoxia. Experimental Neurology, 2020, 325, 113075.	4.1	9

#	Article	IF	CITATIONS
19	Sex and chronic stress alter delta opioid receptor distribution within rat hippocampal CA1 pyramidal cells following behavioral challenges. Neurobiology of Stress, 2020, 13, 100236.	4.0	4
20	A dual-virus strategy for the deletion of cacan1c within the prelimbic to nucleus accumbens core projection. Molecular Psychiatry, 2020, 25, 2201-2202.	7.9	0
21	Endocannabinoid genetic variation enhances vulnerability to THC reward in adolescent female mice. Science Advances, 2020, 6, eaay1502.	10.3	19
22	Sex and chronic stress differentially alter phosphorylated mu and delta opioid receptor levels in the rat hippocampus following oxycodone conditioned place preference. Neuroscience Letters, 2019, 713, 134514.	2.1	12
23	Plasma Membrane Affiliated AMPA GluA1 in Estrogen Receptor β-containing Paraventricular Hypothalamic Neurons Increases Following Hypertension in a Mouse Model of Post-menopause. Neuroscience, 2019, 423, 192-205.	2.3	8
24	Sex Differences in Neuroplasticity- and Stress-Related Gene Expression and Protein Levels in the Rat Hippocampus Following Oxycodone Conditioned Place Preference. Neuroscience, 2019, 410, 274-292.	2.3	20
25	Back Cover: Cover Image, Volume 73, Issue 5. Synapse, 2019, 73, e22098.	1.2	Ο
26	Modeling Patient-Derived Glioblastoma with Cerebral Organoids. Cell Reports, 2019, 26, 3203-3211.e5.	6.4	293
27	ALS/FTD mutant CHCHD10 mice reveal a tissue-specific toxic gain-of-function and mitochondrial stress response. Acta Neuropathologica, 2019, 138, 103-121.	7.7	71
28	Chronic immobilization stress primes the hippocampal opioid system for oxycodoneâ€associated learning in female but not male rats. Synapse, 2019, 73, e22088.	1.2	11
29	Effects of estrogen and aging on synaptic morphology and distribution of phosphorylated Tyr1472 NR2B in the female rat hippocampus. Neurobiology of Aging, 2019, 73, 200-210.	3.1	15
30	Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science, 2019, 364, .	12.6	412
31	In vitro and in vivo studies of the ALS-FTLD protein CHCHD10 reveal novel mitochondrial topology and protein interactions. Human Molecular Genetics, 2018, 27, 160-177.	2.9	68
32	Sex differences after chronic stress in the expression of opioid-, stress- and neuroplasticity-related genes in the rat hippocampus. Neurobiology of Stress, 2018, 8, 33-41.	4.0	32
33	Cover Image, Volume 526, Issue 14. Journal of Comparative Neurology, 2018, 526, C1-C1.	1.6	0
34	Sex Differences in the Rat Hippocampal Opioid System After Oxycodone Conditioned Place Preference. Neuroscience, 2018, 393, 236-257.	2.3	24
35	Molecular profiling of reticular gigantocellularis neurons indicates that eNOS modulates environmentally dependent levels of arousal. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6900-E6909.	7.1	24
36	Progesterone receptor expression in cajalâ€retzius cells of the developing rat dentate gyrus: Potential role in hippocampusâ€dependent memory. Journal of Comparative Neurology, 2018, 526, 2285-2300.	1.6	12

#	Article	IF	CITATIONS
37	Parkin is a disease modifier in the mutant <scp>SOD</scp> 1 mouse model of <scp>ALS</scp> . EMBO Molecular Medicine, 2018, 10, .	6.9	58
38	Sex Differences in the Subcellular Distribution of Corticotropin-Releasing Factor Receptor 1 in the Rat Hippocampus following Chronic Immobilization Stress. Neuroscience, 2018, 383, 98-113.	2.3	13
39	Rodent Models of Ovarian Failure. , 2018, , 831-844.		3
40	Redistribution of NMDA Receptors in Estrogen-Receptor-Î ² -Containing Paraventricular Hypothalamic Neurons following Slow-Pressor Angiotensin II Hypertension in Female Mice with Accelerated Ovarian Failure. Neuroendocrinology, 2017, 104, 239-256.	2.5	22
41	Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis. Stroke, 2017, 48, 1033-1043.	2.0	399
42	Extinction of Contextual Cocaine Memories Requires Ca _v 1.2 within D1R-Expressing Cells and Recruits Hippocampal Ca _v 1.2-Dependent Signaling Mechanisms. Journal of Neuroscience, 2017, 37, 11894-11911.	3.6	30
43	Sodium channel subtypes are differentially localized to pre―and postâ€synaptic sites in rat hippocampus. Journal of Comparative Neurology, 2017, 525, 3563-3578.	1.6	15
44	Loss of APOBEC1 RNA-editing function in microglia exacerbates age-related CNS pathophysiology. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13272-13277.	7.1	34
45	Understanding the broad influence of sex hormones and sex differences in the brain. Journal of Neuroscience Research, 2017, 95, 24-39.	2.9	442
46	SorCS2-mediated NR2A trafficking regulates motor deficits in Huntington's disease. JCI Insight, 2017, 2,	5.0	26
47	Alterations in the subcellular distribution of NADPH oxidase p47 ^{phox} in hypothalamic paraventricular neurons following slowâ€pressor angiotensin II hypertension in female mice with accelerated ovarian failure. Journal of Comparative Neurology, 2016, 524, 2251-2265.	1.6	11
48	Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress. Neurobiology of Stress, 2016, 5, 37-53.	4.0	21
49	Estrogen receptor α and C-protein coupled estrogen receptor 1 are localized to GABAergic neurons in the dorsal striatum. Neuroscience Letters, 2016, 622, 118-123.	2.1	52
50	Autocrine BDNF–TrkB signalling within a single dendritic spine. Nature, 2016, 538, 99-103.	27.8	272
51	Soluble adenylyl cyclase is essential for proper lysosomal acidification. Journal of General Physiology, 2016, 148, 325-339.	1.9	32
52	Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation. Stem Cell Reports, 2016, 7, 664-677.	4.8	164
53	Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord. Neuron, 2016, 90, 1189-1202.	8.1	40
54	Enkephalin levels and the number of neuropeptide Y-containing interneurons in the hippocampus are decreased in female cannabinoid-receptor 1 knock-out mice. Neuroscience Letters, 2016, 620, 97-103.	2.1	7

#	Article	IF	CITATIONS
55	Sex Differences in Neural Regulation of Hypertension. , 2016, , 195-221.		3
56	Female protection from slowâ€pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors. Synapse, 2015, 69, 148-165.	1.2	30
57	G-Protein-Coupled Estrogen Receptor 1 Is Anatomically Positioned to Modulate Synaptic Plasticity in the Mouse Hippocampus. Journal of Neuroscience, 2015, 35, 2384-2397.	3.6	122
58	Opioid Receptor-Dependent Sex Differences in Synaptic Plasticity in the Hippocampal Mossy Fiber Pathway of the Adult Rat. Journal of Neuroscience, 2015, 35, 1723-1738.	3.6	54
59	Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Hormones and Behavior, 2015, 74, 125-138.	2.1	208
60	NMDA Receptor Plasticity in the Hypothalamic Paraventricular Nucleus Contributes to the Elevated Blood Pressure Produced by Angiotensin II. Journal of Neuroscience, 2015, 35, 9558-9567.	3.6	39
61	Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension. Neuroscience, 2015, 307, 83-97.	2.3	21
62	Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington's disease. Neurobiology of Disease, 2015, 82, 466-477.	4.4	31
63	Estrogen Effects on Hippocampal Synapses. , 2014, , 195-219.		2
64	p75 ^{NTR} , but Not proNGF, Is Upregulated Following Status Epilepticus in Mice. ASN Neuro, 2014, 6, 175909141455218.	2.7	40
65	Medial Prefrontal Cortical Estradiol Rapidly Alters Memory System Bias in Female Rats: Ultrastructural Analysis Reveals Membrane-Associated Estrogen Receptors as Potential Mediators. Endocrinology, 2014, 155, 4422-4432.	2.8	65
66	Characterization of Neural Estrogen Signaling and Neurotrophic Changes in the Accelerated Ovarian Failure Mouse Model of Menopause. Endocrinology, 2014, 155, 3610-3623.	2.8	34
67	Slowâ€pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor l²â€"containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent. Journal of Comparative Neurology, 2014, 522, 3075-3090.	1.6	33
68	Hippocampal mossy fiber leu-enkephalin immunoreactivity in female rats is significantly altered following both acute and chronic stress. Journal of Chemical Neuroanatomy, 2014, 55, 9-17.	2.1	30
69	Synaptic and extrasynaptic location of the receptor tyrosine kinase met during postnatal development in the mouse neocortex and hippocampus. Journal of Comparative Neurology, 2013, 521, 3241-3259.	1.6	32
70	Corticotropin-releasing factor in the mouse central nucleus of the amygdala: Ultrastructural distribution in NMDA-NR1 receptor subunit expressing neurons as well as projection neurons to the bed nucleus of the stria terminalis. Experimental Neurology, 2013, 239, 120-132.	4.1	37
71	The influences of reproductive status and acute stress on the levels of phosphorylated delta opioid receptor immunoreactivity in rat hippocampus. Brain Research, 2013, 1518, 71-81.	2.2	25
72	Post-synaptic Density-95 (PSD-95) Binding Capacity of G-protein-coupled Receptor 30 (GPR30), an Estrogen Receptor That Can Be Identified in Hippocampal Dendritic Spines. Journal of Biological Chemistry, 2013, 288, 6438-6450.	3.4	117

#	Article	IF	CITATIONS
73	Membrane Trafficking of NADPH Oxidase p47 ^{phox} in Paraventricular Hypothalamic Neurons Parallels Local Free Radical Production in Angiotensin II Slow-Pressor Hypertension. Journal of Neuroscience, 2013, 33, 4308-4316.	3.6	40
74	Stress differentially alters mu opioid receptor density and trafficking in parvalbumin ontaining interneurons in the female and male rat hippocampus. Synapse, 2013, 67, 757-772.	1.2	54
75	Angiotensin II slow-pressor hypertension enhances NMDA currents and NOX2-dependent superoxide production in hypothalamic paraventricular neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R1096-R1106.	1.8	51
76	Estrogen Receptors Are Found in Glia and at Extranuclear Neuronal Sites in the Dorsal Striatum of Female Rats: Evidence for Cholinergic But Not Dopaminergic Colocalization. Endocrinology, 2012, 153, 5373-5383.	2.8	87
77	Central Cardiovascular Circuits Contribute to the Neurovascular Dysfunction in Angiotensin II Hypertension. Journal of Neuroscience, 2012, 32, 4878-4886.	3.6	89
78	Estradiol acts via estrogen receptors alpha and beta on pathways important for synaptic plasticity in the mouse hippocampal formation. Neuroscience, 2012, 202, 131-146.	2.3	104
79	Distribution of angiotensin type 1a receptor-containing cells in the brains of bacterial artificial chromosome transgenic mice. Neuroscience, 2012, 226, 489-509.	2.3	55
80	Estrogen effects on the brain: Actions beyond the hypothalamus via novel mechanisms Behavioral Neuroscience, 2012, 126, 4-16.	1.2	232
81	Delta opioid receptors colocalize with corticotropin releasing factor in hippocampal interneurons. Neuroscience, 2011, 179, 9-22.	2.3	20
82	Hormonal regulation of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus. Neurobiology of Learning and Memory, 2011, 95, 206-220.	1.9	36
83	The Influences of Reproductive Status and Acute Stress on the Levels of Phosphorylated Mu Opioid Receptor Immunoreactivity in Rat Hippocampus. Frontiers in Endocrinology, 2011, 2, .	3.5	20
84	Ovarian hormones influence corticotropin releasing factor receptor colocalization with delta opioid receptors in CA1 pyramidal cell dendrites. Experimental Neurology, 2011, 230, 186-196.	4.1	33
85	Effects of estrogen and aging on the synaptic distribution of phosphorylated Akt-immunoreactivity in the CA1 region of the female rat hippocampus. Brain Research, 2011, 1379, 98-108.	2.2	22
86	Age- and hormone-regulation of opioid peptides and synaptic proteins in the rat dorsal hippocampal formation. Brain Research, 2011, 1379, 71-85.	2.2	23
87	Estrogen and aging affect the synaptic distribution of estrogen receptor beta-immunoreactivity in the CA1 region of female rat hippocampus. Brain Research, 2011, 1379, 86-97.	2.2	93
88	Accelerated Ovarian Failure: A novel, chemically induced animal model of menopause. Brain Research, 2011, 1379, 176-187.	2.2	85
89	Distribution of Phosphorylated TrkB Receptor in the Mouse Hippocampal Formation Depends on Sex and Estrous Cycle Stage. Journal of Neuroscience, 2011, 31, 6780-6790.	3.6	81
90	Degenerating Processes Identified by Electron Microscopic Immunocytochemical Methods. Methods in Molecular Biology, 2011, 793, 23-59.	0.9	77

#	Article	IF	CITATIONS
91	Distribution of estrogen receptor beta containing cells in the brains of bacterial artificial chromosome transgenic mice. Brain Research, 2010, 1351, 74-96.	2.2	61
92	Cellular and subcellular localization of estrogen and progestin receptor immunoreactivities in the mouse hippocampus. Journal of Comparative Neurology, 2010, 518, 2729-2743.	1.6	158
93	BDNF variant Val66Met interacts with estrous cycle in the control of hippocampal function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4395-4400.	7.1	73
94	Synaptic Cross Talk between Perisomatic-Targeting Interneuron Classes Expressing Cholecystokinin and Parvalbumin in Hippocampus. Journal of Neuroscience, 2009, 29, 4140-4154.	3.6	116
95	Estrogen receptor alpha and beta specific agonists regulate expression of synaptic proteins in rat hippocampus. Brain Research, 2009, 1290, 1-11.	2.2	113
96	Ovarian steroids alter mu opioid receptor trafficking in hippocampal parvalbumin GABAergic interneurons. Experimental Neurology, 2009, 219, 319-327.	4.1	42
97	Hippocampal dynorphin immunoreactivity increases in response to gonadal steroids and is positioned for direct modulation by ovarian steroid receptors. Neuroscience, 2009, 159, 204-216.	2.3	41
98	Sex differences in the subcellular distribution of angiotensin type 1 receptors and NADPH oxidase subunits in the dendrites of C1 neurons in the rat rostral ventrolateral medulla. Neuroscience, 2009, 163, 329-338.	2.3	56
99	Ultrastructural evidence for pre―and postsynaptic localization of Ca _v 1.2 Lâ€ŧype Ca ²⁺ channels in the rat hippocampus. Journal of Comparative Neurology, 2008, 506, 569-583.	1.6	100
100	Ultrastructural localization of extranuclear progestin receptors in the rat hippocampal formation. Journal of Comparative Neurology, 2008, 511, 34-46.	1.6	71
101	Uncovering the mechanisms of estrogen effects on hippocampal function. Frontiers in Neuroendocrinology, 2008, 29, 219-237.	5.2	352
102	Ovarian steroids modulate leu-enkephalin levels and target leu-enkephalinergic profiles in the female hippocampal mossy fiber pathway. Brain Research, 2008, 1232, 70-84.	2.2	31
103	Ultrastructural localization of extranuclear progestin receptors relative to C1 neurons in the rostral ventrolateral medulla. Neuroscience Letters, 2008, 431, 167-172.	2.1	11
104	Estrogen and aging affect synaptic distribution of phosphorylated LIM kinase (pLIMK) in CA1 region of female rat hippocampus. Neuroscience, 2008, 152, 360-370.	2.3	48
105	Estrous cycle regulates activation of hippocampal Akt, LIM kinase, and neurotrophin receptors in C57BL/6 mice. Neuroscience, 2008, 155, 1106-1119.	2.3	102
106	Angiotensin II-induced hypertension differentially affects estrogen and progestin receptors in central autonomic regulatory areas of female rats. Experimental Neurology, 2008, 212, 393-406.	4.1	20
107	Nuclear and Extranuclear Estrogen Binding Sites in the Rat Forebrain and Autonomic Medullary Areas. Endocrinology, 2008, 149, 3306-3312.	2.8	52
108	Opioid systems in the dentate gyrus. Progress in Brain Research, 2007, 163, 245-814.	1.4	107

#	Article	IF	CITATIONS
109	Cellular and subcellular localization of androgen receptor immunoreactivity relative to C1 adrenergic neurons in the rostral ventrolateral medulla of male and female rats. Synapse, 2007, 61, 268-278.	1.2	21
110	Hippocampal formation: Shedding light on the influence of sex and stress on the brain. Brain Research Reviews, 2007, 55, 343-355.	9.0	163
111	Mu opioid receptors are extensively co-localized with parvalbumin, but not somatostatin, in the dentate gyrus. Neuroscience Letters, 2006, 403, 176-180.	2.1	25
112	Evidence that estrogen directly and indirectly modulates C1 adrenergic bulbospinal neurons in the rostral ventrolateral medulla. Brain Research, 2006, 1094, 163-178.	2.2	57
113	Extranuclear estrogen receptor beta immunoreactivity is on doublecortin-containing cells in the adult and neonatal rat dentate gyrus. Brain Research, 2006, 1121, 46-58.	2.2	73
114	Ultrastructural localization of estrogen receptor Î ² immunoreactivity in the rat hippocampal formation. Journal of Comparative Neurology, 2005, 491, 81-95.	1.6	331
115	Sex Differences in Hippocampal Estradiol-Induced N-Methyl- <i>D</i> -Aspartic Acid Binding and Ultrastructural Localization of Estrogen Receptor-Alpha. Neuroendocrinology, 2005, 81, 391-399.	2.5	101
116	Receptor targeting in medullary nuclei mediating baroreceptor reflexes. Cellular and Molecular Neurobiology, 2003, 23, 751-760.	3.3	7
117	Subcellular relationships between cholinergic terminals and estrogen receptorâ€Î± in the dorsal hippocampus. Journal of Comparative Neurology, 2003, 463, 390-401.	1.6	112
118	Estrogen Levels Regulate the Subcellular Distribution of Phosphorylated Akt in Hippocampal CA1 Dendrites. Journal of Neuroscience, 2003, 23, 2340-2347.	3.6	144
119	C1 adrenergic neurons are contacted by presynaptic profiles containing DELTA-opioid receptor immunoreactivity. Neuroscience, 2002, 110, 691-701.	2.3	10
120	Estrogen and Aging Affect the Subcellular Distribution of Estrogen Receptor-α in the Hippocampus of Female Rats. Journal of Neuroscience, 2002, 22, 3608-3614.	3.6	246
121	Mu opioid receptors are in discrete hippocampal interneuron subpopulations. Hippocampus, 2002, 12, 119-136.	1.9	125
122	Ultrastructural evidence for presynaptic μ opioid receptor modulation of synaptic plasticity in NMDA-receptor-containing dendrites in the dentate gyrus. Brain Research Bulletin, 2001, 54, 131-140.	3.0	35
123	Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites. Journal of Comparative Neurology, 2001, 429, 355-371.	1.6	457
124	Hippocampal tyrosine kinase A receptors are restricted primarily to presynaptic vesicle clusters. Journal of Comparative Neurology, 2001, 430, 182-199.	1.6	26
125	Selective distribution of ?-opioid receptors in C1 adrenergic neurons and their afferents. Journal of Comparative Neurology, 2001, 433, 23-33.	1.6	20
126	-opioid receptors are present in functionally identified sympathoexcitatory neurons in the rat rostral ventrolateral medulla. Journal of Comparative Neurology, 2001, 433, 34-47.	1.6	37

#	Article	IF	CITATIONS
127	Subcellular localization of ?-2A-adrenergic receptors in the rat medial nucleus tractus solitarius: Regional targeting and relationship with catecholamine neurons. Journal of Comparative Neurology, 2001, 433, 193-207.	1.6	37
128	Parallel increases in the synaptic and surface areas of mossy fiber terminals following seizure induction. Synapse, 2001, 39, 249-256.	1.2	32
129	Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites. Journal of Comparative Neurology, 2001, 429, 355-71.	1.6	206
130	?-Adrenergic receptors primarily are located on the dendrites of granule cells and interneurons but also are found on astrocytes and a few presynaptic profiles in the rat dentate gyrus. , 2000, 36, 178-193.		56
131	Mu opioid receptors are in somatodendritic and axonal compartments of GABAergic neurons in rat hippocampal formation. Brain Research, 1999, 849, 203-215.	2.2	112
132	Morphometry of a peptidergic transmitter system: Dynorphin B-like immunoreactivity in the rat hippocampal mossy fiber pathway before and after seizures. Hippocampus, 1999, 9, 255-276.	1.9	96
133	p75NTR immunoreactivity in the rat dentate gyrus is mostly within presynaptic profiles but is also found in some astrocytic and postsynaptic profiles. , 1999, 407, 77-91.		73
134	Parvalbumin immunoreactive neurons in the rat septal complex have substantial glial coverage and receive few direct contacts from catecholaminergic terminals. , 1998, 52, 723-735.		6
135	Hippocampal ?2A-adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes. , 1998, 395, 310-327.		89
136	Hippocampal alpha2a-adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes. Journal of Comparative Neurology, 1998, 395, 310-27.	1.6	36
137	Localization of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus. Journal of Comparative Neurology, 1997, 381, 373-387.	1.6	55
138	Selective changes in hippocampal neuropeptide Y neurons following removal of the cholinergic septal inputs. Journal of Comparative Neurology, 1997, 386, 46-59.	1.6	41
139	Kappa opioid receptor-like immunoreactivity is present in substance P-containing subcortical afferents in guinea pig dentate gyrus. , 1997, 7, 36-47.		18
140	Localization of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus. Journal of Comparative Neurology, 1997, 381, 373-87.	1.6	20
141	Selective changes in hippocampal neuropeptide Y neurons following removal of the cholinergic septal inputs. Journal of Comparative Neurology, 1997, 386, 46-59.	1.6	12
142	Afferent sources of substance P in the C1 area of the rat rostral ventrolateral medulla. Neuroscience Letters, 1996, 205, 37-40.	2.1	14
143	Ultrastructural view of central catecholaminergic transmission: immunocytochemical localization of synthesizing enzymes, transporters and receptors. Journal of Neurocytology, 1996, 25, 843-856.	1.5	77
144	Cellular and subcellular localization of δopioid receptor immunoreactivity in the rat dentate gyrus. Brain Research, 1996, 738, 181-195.	2.2	57

#	Article	IF	CITATIONS
145	Regional and ultrastructural distribution of the ?8 integrin subunit in developing and adult rat brain suggests a role in synaptic function. , 1996, 370, 105-134.		119
146	Kappa opioid receptor-like immunoreactivity in guinea pig brain: Ultrastructural localization in presynaptic terminals in hippocampal formation. , 1996, 370, 377-395.		67
147	Monosynaptic projections from the nucleus tractus solitarii to C1 adrenergic neurons in the rostral ventrolateral medulla: Comparison with input from the caudal ventrolateral medulla. , 1996, 373, 62-75.		134
148	Regional and ultrastructural distribution of the α8 integrin subunit in developing and adult rat brain suggests a role in synaptic function. Journal of Comparative Neurology, 1996, 370, 105-134.	1.6	2
149	Rat hippocampal mossy fibers contain cholecystokinin-like immunoreactivity. The Anatomical Record, 1995, 243, 519-523.	1.8	10
150	Monosynaptic input from Leu5-enkephalin-immunoreactive terminals to vagal motor neurons in the nucleus ambiguus: Comparison with the dorsal motor nucleus of the vagus. Journal of Comparative Neurology, 1995, 353, 391-406.	1.6	26
151	Ultrastructural heterogeneity of enkephalin-containing terminals in the rat hippocampal formation. Journal of Comparative Neurology, 1995, 358, 324-342.	1.6	50
152	Monosynaptic projections from the medullary gigantocellular reticular formation to sympathetic preganglionic neurons in the thoracic spinal cord. Journal of Comparative Neurology, 1995, 363, 563-580.	1.6	52
153	Neuropeptide Y and dynorphin-immunoreactive large dense-core vesicles are strategically localized for presynaptic modulation in the hippocampal formation and substantia nigra. Synapse, 1995, 19, 160-169.	1.2	50
154	Ultrastructural localization and afferent sources of corticotropin-releasing factor in the rat rostral ventrolateral medulla: Implications for central cardiovascular regulation. Journal of Comparative Neurology, 1993, 333, 151-167.	1.6	58
155	Transient increases in neuropeptide Y-like immunoreactivity in dentate hilar neurons following fimbria/fornix transection. Journal of Neuroscience Research, 1993, 34, 434-441.	2.9	8
156	Serotonin-containing terminals synapse on septohippocampal neurons in the rat. Journal of Neuroscience Research, 1993, 36, 260-271.	2.9	61
157	Septal efferent axon terminals identified by anterograde degeneration show multiple sites for modulation of neuropeptide Y-containing neurons in the rat dentate gyrus. Synapse, 1993, 14, 101-112.	1.2	13
158	Ultrastructural localization of neuropeptide Y-like immunoreactivity in the rat hippocampal formation. Hippocampus, 1992, 2, 107-125.	1.9	114
159	Cholinergic neurons in the rat septal complex: Ultrastructural characterization and synaptic relations with catecholaminergic terminals. Journal of Comparative Neurology, 1991, 314, 37-54.	1.6	31
160	Ultrastructural localization of tyrosine hydroxylase immunoreactivity in the rat diagonal band of broca. Journal of Neuroscience Research, 1991, 30, 498-511.	2.9	17
161	Tyrosine hydroxylase and enkephalin in the rostral ventrolateral medulla: major synaptic contacts from opioid terminals on catecholaminergic neurons. Progress in Clinical and Biological Research, 1990, 328, 195-8.	0.2	4
162	GABAergic neurons in the rat hippocampal formation: ultrastructure and synaptic relationships with catecholaminergic terminals. Journal of Neuroscience, 1989, 9, 3410-3427.	3.6	73

#	Article	IF	CITATIONS
163	Ultrastructural basis for interactions between central opioids and catecholamines. I. Rostral ventrolateral medulla. Journal of Neuroscience, 1989, 9, 2114-2130.	3.6	80
164	Ultrastructural localization of tyrosine hydroxylase-like immunoreactivity in the rat hippocampal formation. Journal of Comparative Neurology, 1989, 281, 479-495.	1.6	67
165	Ultrastructural localization of somatostatin-like immunoreactivity in the rat dentate gyrus. Journal of Comparative Neurology, 1989, 290, 544-560.	1.6	71
166	Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature, 1989, 339, 468-470.	27.8	447
167	Ultrastructural characterization of substance P-like immunoreactive neurons in the rostral ventrolateral medulla in relation to neurons containing catecholamine-synthesizing enzymes. Journal of Comparative Neurology, 1988, 270, 427-445.	1.6	79
168	Light microscopic immunocytochemical localization of pyruvate dehydrogenase complex in rat brain: topographical distribution and relation to cholinergic and catecholaminergic nuclei. Journal of Neuroscience, 1987, 7, 3171-3190.	3.6	50