Sarah Cleaveland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2612824/publications.pdf

Version: 2024-02-01

153 papers 11,366 citations

52 h-index 100 g-index

163 all docs

 $\begin{array}{c} 163 \\ \text{docs citations} \end{array}$

163 times ranked 8690 citing authors

#	Article	IF	CITATIONS
1	Rabies and the pandemic: lessons for One Health. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2022, 116, 197-200.	1.8	30
2	Spread of Nontyphoidal <i>Salmonella</i> in the Beef Supply Chain in Northern Tanzania: Sensitivity in a Probabilistic Model Integrating Microbiological Data and Data from Stakeholder Interviews. Risk Analysis, 2022, 42, 989-1006.	2.7	2
3	Incidence Estimates of Acute Q Fever and Spotted Fever Group Rickettsioses, Kilimanjaro, Tanzania, from 2007 to 2008 and from 2012 to 2014. American Journal of Tropical Medicine and Hygiene, 2022, 106, 494-503.	1.4	10
4	Scaling-up the delivery of dog vaccination campaigns against rabies in Tanzania. PLoS Neglected Tropical Diseases, 2022, 16, e0010124.	3.0	9
5	"Using the same hand― The complex local perceptions of integrated one health based interventions in East Africa. PLoS Neglected Tropical Diseases, 2022, 16, e0010298.	3.0	6
6	Rabies shows how scale of transmission can enable acute infections to persist at low prevalence. Science, 2022, 376, 512-516.	12.6	17
7	The Prevalence and Determinants of Taenia multiceps Infection (Cerebral Coenurosis) in Small Ruminants in Africa: A Systematic Review. Parasitologia, 2022, 2, 137-146.	1.3	O
8	Prospective cohort study reveals unexpected aetiologies of livestock abortion in northern Tanzania. Scientific Reports, 2022, 12 , .	3.3	13
9	Investigating the Meat Pathway as a Source of Human Nontyphoidal <i>Salmonella</i> Bloodstream Infections and Diarrhea in East Africa. Clinical Infectious Diseases, 2021, 73, e1570-e1578.	5.8	23
10	Detection of African swine fever virus genotype XV in a sylvatic cycle in Saadani National Park, Tanzania. Transboundary and Emerging Diseases, 2021, 68, 813-823.	3.0	13
11	The first genotype II African swine fever virus isolated in Africa provides insight into the current Eurasian pandemic. Scientific Reports, 2021, 11, 13081.	3.3	34
12	Post <scp>COVIDâ€19</scp> : a solution scan of options for preventing future zoonotic epidemics. Biological Reviews, 2021, 96, 2694-2715.	10.4	40
13	Reservoir dynamics of rabies in southâ€east Tanzania and the roles of crossâ€species transmission and domestic dog vaccination. Journal of Applied Ecology, 2021, 58, 2673-2685.	4.0	10
14	Use of lay vaccinators in animal vaccination programmes: A scoping review. PLoS Neglected Tropical Diseases, 2021, 15, e0009691.	3.0	7
15	Latent class evaluation of the performance of serological tests for exposure to Brucella spp. in cattle, sheep, and goats in Tanzania. PLoS Neglected Tropical Diseases, 2021, 15, e0009630.	3.0	7
16	Predicting uptake of a malignant catarrhal fever vaccine by pastoralists in northern Tanzania: Opportunities for improving livelihoods and ecosystem health. Ecological Economics, 2021, 190, 107189.	5.7	4
17	One Health for neglected tropical diseases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 182-184.	1.8	32
18	"He Who Relies on His Brother's Property Dies Poor― The Complex Narratives of Livestock Care in Northern Tanzania. Frontiers in Veterinary Science, 2021, 8, 749561.	2.2	5

#	Article	IF	Citations
19	African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa. Viruses, 2021, 13, 2285.	3.3	38
20	Prevalence of Campylobacter and Salmonella in African food animals and meat: A systematic review and meta-analysis. International Journal of Food Microbiology, 2020, 315, 108382.	4.7	97
21	Farm-Level Risk Factors of Increased Abortion and Mortality in Domestic Ruminants during the 2010 Rift Valley Fever Outbreak in Central South Africa. Pathogens, 2020, 9, 914.	2.8	2
22	Distemper, extinction, and vaccination of the Amur tiger. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31954-31962.	7.1	33
23	Certifying Guinea worm eradication: current challenges. Lancet, The, 2020, 396, 1857-1860.	13.7	11
24	Peste des petits ruminants Virus Transmission Scaling and Husbandry Practices That Contribute to Increased Transmission Risk: An Investigation among Sheep, Goats, and Cattle in Northern Tanzania. Viruses, 2020, 12, 930.	3.3	10
25	Meat Safety in Northern Tanzania: Inspectors' and Slaughter Workers' Risk Perceptions and Management. Frontiers in Veterinary Science, 2020, 7, 309.	2.2	9
26	Dog rabies and its control. , 2020, , 567-603.		1
27	Zoonotic causes of febrile illness in malaria endemic countries: a systematic review. Lancet Infectious Diseases, The, 2020, 20, e27-e37.	9.1	17
28	Meat Safety in Tanzania's Value Chain: Experiences, Explanations and Expectations in Butcheries and Eateries. International Journal of Environmental Research and Public Health, 2020, 17, 2833.	2.6	9
29	Crossâ€species transmission and evolutionary dynamics of canine distemper virus during a spillover in African lions of Serengeti National Park. Molecular Ecology, 2020, 29, 4308-4321.	3.9	18
30	Classification and characterisation of livestock production systems in northern Tanzania. PLoS ONE, 2020, 15, e0229478.	2.5	25
31	Identifying Age Cohorts Responsible for Peste Des Petits Ruminants Virus Transmission among Sheep, Goats, and Cattle in Northern Tanzania. Viruses, 2020, 12, 186.	3.3	8
32	Estimating acute human leptospirosis incidence in northern Tanzania using sentinel site and community behavioural surveillance. Zoonoses and Public Health, 2020, 67, 496-505.	2.2	3
33	Molecular Detection and Typing of Pathogenic Leptospira in Febrile Patients and Phylogenetic Comparison with Leptospira Detected among Animals in Tanzania. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1427-1434.	1.4	10
34	Global selective sweep of a highly inbred genome of the cattle parasite Neospora caninum. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22764-22773.	7.1	20
35	An integrated health delivery platform, targeting soil-transmitted helminths (STH) and canine mediated human rabies, results in cost savings and increased breadth of treatment for STH in remote communities in Tanzania. BMC Public Health, 2019, 19, 1398.	2.9	11
36	The Sero-epidemiology of Neospora caninum in Cattle in Northern Tanzania. Frontiers in Veterinary Science, 2019, 6, 327.	2.2	16

3

#	Article	IF	Citations
37	Analysing livestock network data for infectious disease control: an argument for routine data collection in emerging economies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180264.	4.0	49
38	Carnivore Parvovirus Ecology in the Serengeti Ecosystem: Vaccine Strains Circulating and New Host Species Identified. Journal of Virology, 2019, 93, .	3.4	16
39	Low topotype diversity of recent foot-and-mouth disease virus serotypes O and A from districts located along the Uganda and Tanzania border. Journal of Veterinary Science, 2019, 20, e4.	1.3	4
40	Transmission ecology of canine parvovirus in a multi-host, multi-pathogen system. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182772.	2.6	26
41	<i>Taenia multiceps</i> coenurosis in Tanzania: a major and underâ€recognised livestock disease problem in pastoral communities. Veterinary Record, 2019, 184, 191-191.	0.3	12
42	The need to improve access to rabies post-exposure vaccines: Lessons from Tanzania. Vaccine, 2019, 37, A45-A53.	3.8	45
43	A hundred years of rabies in Kenya and the strategy for eliminating dog-mediated rabies by 2030. AAS Open Research, 2019, 1, 23.	1.5	22
44	Estimating the Size of Dog Populations in Tanzania to Inform Rabies Control. Veterinary Sciences, 2018, 5, 77.	1.7	22
45	Incidence of human brucellosis in the Kilimanjaro Region of Tanzania in the periods 2007–2008 and 2012–2014. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2018, 112, 136-143.	1.8	24
46	Assessment of animal hosts of pathogenic Leptospira in northern Tanzania. PLoS Neglected Tropical Diseases, 2018, 12, e0006444.	3.0	35
47	Risk factors for human acute leptospirosis in northern Tanzania. PLoS Neglected Tropical Diseases, 2018, 12, e0006372.	3.0	33
48	Waves of endemic foot-and-mouth disease in eastern Africa suggest feasibility of proactive vaccination approaches. Nature Ecology and Evolution, 2018, 2, 1449-1457.	7.8	66
49	Risk Factors for Human Brucellosis in Northern Tanzania. American Journal of Tropical Medicine and Hygiene, 2018, 98, 598-606.	1.4	34
50	Zoonotic diseases: sharing insights from interdisciplinary research. Veterinary Record, 2017, 180, 270-271.	0.3	3
51	Driving improvements in emerging disease surveillance through locally relevant capacity strengthening. Science, 2017, 357, 146-148.	12.6	60
52	One Health contributions towards more effective and equitable approaches to health in low- and middle-income countries. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160168.	4.0	132
53	Scoping review of indicators and methods of measurement used to evaluate the impact of dog population management interventions. BMC Veterinary Research, 2017, 13, 143.	1.9	34
54	Rabies elimination research: juxtaposing optimism, pragmatism and realism. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171880.	2.6	44

#	Article	IF	Citations
55	Toward Elimination of Dog-Mediated Human Rabies: Experiences from Implementing a Large-scale Demonstration Project in Southern Tanzania. Frontiers in Veterinary Science, 2017, 4, 21.	2.2	56
56	Comparing Methods of Assessing Dog Rabies Vaccination Coverage in Rural and Urban Communities in Tanzania. Frontiers in Veterinary Science, 2017, 4, 33.	2.2	31
57	Animal-related factors associated with moderate-to-severe diarrhea in children younger than five years in western Kenya: A matched case-control study. PLoS Neglected Tropical Diseases, 2017, 11, e0005795.	3.0	40
58	One Health Research in Northern Tanzania – Challenges and Progress. The East African Health Research Journal, 2017, 1, 8-18.	0.4	11
59	Integrating serological and genetic data to quantify cross-species transmission: brucellosis as a case study. Parasitology, 2016, 143, 821-834.	1.5	24
60	The efficacy of alcelaphine herpesvirus-1 (AlHV-1) immunization with the adjuvants Emulsigen \hat{A}^{\otimes} and the monomeric TLR5 ligand FliC in zebu cattle against AlHV-1 malignant catarrhal fever induced by experimental virus challenge. Veterinary Microbiology, 2016, 195, 144-153.	1.9	11
61	Thermotolerance of an inactivated rabies vaccine for dogs. Vaccine, 2016, 34, 5504-5511.	3.8	33
62	Enhanced immunosurveillance for animal morbilliviruses using vesicular stomatitis virus (VSV) pseudotypes. Vaccine, 2016, 34, 5736-5743.	3.8	14
63	Efficient generation of vesicular stomatitis virus (VSV)-pseudotypes bearing morbilliviral glycoproteins and their use in quantifying virus neutralising antibodies. Vaccine, 2016, 34, 814-822.	3.8	25
64	Mobile Phones As Surveillance Tools: Implementing and Evaluating a Large-Scale Intersectoral Surveillance System for Rabies in Tanzania. PLoS Medicine, 2016, 13, e1002002.	8.4	85
65	Mixed Methods Survey of Zoonotic Disease Awareness and Practice among Animal and Human Healthcare Providers in Moshi, Tanzania. PLoS Neglected Tropical Diseases, 2016, 10, e0004476.	3.0	38
66	Comparison of the Estimated Incidence of Acute Leptospirosis in the Kilimanjaro Region of Tanzania between 2007–08 and 2012–14. PLoS Neglected Tropical Diseases, 2016, 10, e0005165.	3.0	22
67	Quantifying Heterogeneity in Host-Vector Contact: Tsetse (Glossina swynnertoni and G. pallidipes) Host Choice in Serengeti National Park, Tanzania. PLoS ONE, 2016, 11, e0161291.	2.5	14
68	Heterogeneity in the spread and control of infectious disease: consequences for the elimination of canine rabies. Scientific Reports, 2015, 5, 18232.	3.3	45
69	Canine distemper virus as a threat to wild tigers in Russia and across their range. Integrative Zoology, 2015, 10, 329-343.	2.6	47
70	The Economic Impact of Malignant Catarrhal Fever on Pastoralist Livelihoods. PLoS ONE, 2015, 10, e0116059.	2.5	24
71	Epidemiology of Leptospirosis in Africa: A Systematic Review of a Neglected Zoonosis and a Paradigm for â€`One Health' in Africa. PLoS Neglected Tropical Diseases, 2015, 9, e0003899.	3.0	105
72	Elucidating the phylodynamics of endemic rabies virus in eastern Africa using whole-genome sequencing. Virus Evolution, 2015, 1, vev011.	4.9	55

#	Article	IF	CITATIONS
73	Dynamics of a morbillivirus at the domestic–wildlife interface: Canine distemper virus in domestic dogs and lions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1464-1469.	7.1	128
74	Estimating the Global Burden of Endemic Canine Rabies. PLoS Neglected Tropical Diseases, 2015, 9, e0003709.	3.0	1,008
75	Prevalence and Diversity of Small Mammal-Associated Bartonella Species in Rural and Urban Kenya. PLoS Neglected Tropical Diseases, 2015, 9, e0003608.	3.0	29
76	Endemic zoonoses in the tropics: a public health problem hiding in plain sight. Veterinary Record, 2015, 176, 220-225.	0.3	68
77	Renewing the momentum for leptospirosis research in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 605-606.	1.8	4
78	Alcelaphine Herpesvirus-1 (Malignant Catarrhal Fever Virus) in Wildebeest Placenta: Genetic Variation of ORF50 and A9.5 Alleles. PLoS ONE, 2015, 10, e0124121.	2.5	8
79	The changing landscape of rabies epidemiology and control. Onderstepoort Journal of Veterinary Research, 2014, 81, E1-8.	1.2	27
80	Role of dog sterilisation and vaccination in rabies control programmes. Veterinary Record, 2014, 175, 409-410.	0.3	6
81	Epidemiology of Coxiella burnetii Infection in Africa: A OneHealth Systematic Review. PLoS Neglected Tropical Diseases, 2014, 8, e2787.	3.0	150
82	Knowledge, Attitudes and Practices (KAP) about Rabies Prevention and Control: A Community Survey in Tanzania. PLoS Neglected Tropical Diseases, 2014, 8, e3310.	3.0	142
83	Gentamicin-Attenuated Leishmania infantum Vaccine: Protection of Dogs against Canine Visceral Leishmaniosis in Endemic Area of Southeast of Iran. PLoS Neglected Tropical Diseases, 2014, 8, e2757.	3.0	22
84	Achieving Population-Level Immunity to Rabies in Free-Roaming Dogs in Africa and Asia. PLoS Neglected Tropical Diseases, 2014, 8, e3160.	3.0	45
85	The demography of freeâ€roaming dog populations and applications to disease and population control. Journal of Applied Ecology, 2014, 51, 1096-1106.	4.0	101
86	Rabies control and elimination: a test case for One Health. Veterinary Record, 2014, 175, 188-193.	0.3	71
87	High Prevalence of <i>Rickettsia africae </i> Variants in <i>Amblyomma variegatum </i> Ticks from Domestic Mammals in Rural Western Kenya: Implications for Human Health. Vector-Borne and Zoonotic Diseases, 2014, 14, 693-702.	1.5	59
88	Implementing Pasteur's vision for rabies elimination. Science, 2014, 345, 1562-1564.	12.6	61
89	Assembling evidence for identifying reservoirs of infection. Trends in Ecology and Evolution, 2014, 29, 270-279.	8.7	209
90	Cost-Effectiveness of Canine Vaccination to Prevent Human Rabies in Rural Tanzania. Annals of Internal Medicine, 2014, 160, 91-100.	3.9	71

#	Article	IF	Citations
91	Antigenic and genetic characterization of a divergent African virus, Ikoma lyssavirus. Journal of General Virology, 2014, 95, 1025-1032.	2.9	40
92	Estimating the Potential Impact of Canine Distemper Virus on the Amur Tiger Population (Panthera) Tj ETQq0 0 () rgBT /Ov	erlogk 10 Tf :
93	Dog Rabies and Its Control. , 2013, , 591-615.		16
94	Evidenceâ€based control of canine rabies: a critical review of population density reduction. Journal of Animal Ecology, 2013, 82, 6-14.	2.8	163
95	Surveillance guidelines for disease elimination: A case study of canine rabies. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 249-261.	1.6	87
96	Urban Leptospirosis in Africa: A Cross-Sectional Survey of Leptospira Infection in Rodents in the Kibera Urban Settlement, Nairobi, Kenya. American Journal of Tropical Medicine and Hygiene, 2013, 89, 1095-1102.	1.4	41
97	Peste des Petits Ruminants Infection among Cattle and Wildlife in Northern Tanzania. Emerging Infectious Diseases, 2013, 19, 2037-2040.	4.3	69
98	Designing Programs for Eliminating Canine Rabies from Islands: Bali, Indonesia as a Case Study. PLoS Neglected Tropical Diseases, 2013, 7, e2372.	3.0	128
99	The Burden of Rabies in Tanzania and Its Impact on Local Communities. PLoS Neglected Tropical Diseases, 2013, 7, e2510.	3.0	76
100	Asynchronous food-web pathways could buffer the response of Serengeti predators to El Ni $ ilde{A}\pm 0$ Southern Oscillation. Ecology, 2013, 94, 1123-1130.	3.2	27
101	Brucellosis in low-income and middle-income countries. Current Opinion in Infectious Diseases, 2013, 26, 404-412.	3.1	174
102	Molecular detection of <i>Rickettsia felis and Candidatus </i> Rickettsia Asemboensis in Fleas from Human Habitats, Asembo, Kenya. Vector-Borne and Zoonotic Diseases, 2013, 13, 550-558.	1.5	94
103	Coxiella burnetii in Humans, Domestic Ruminants, and Ticks in Rural Western Kenya. American Journal of Tropical Medicine and Hygiene, 2013, 88, 513-518.	1.4	7 3
104	Potential for Rabies Control through Dog Vaccination in Wildlife-Abundant Communities of Tanzania. PLoS Neglected Tropical Diseases, 2012, 6, e1796.	3.0	46
105	Using Molecular Data for Epidemiological Inference: Assessing the Prevalence of Trypanosoma brucei rhodesiense in Tsetse in Serengeti, Tanzania. PLoS Neglected Tropical Diseases, 2012, 6, e1501.	3.0	37
106	Brucellosis among Hospitalized Febrile Patients in Northern Tanzania. American Journal of Tropical Medicine and Hygiene, 2012, 87, 1105-1111.	1.4	52
107	Bringing together emerging and endemic zoonoses surveillance: shared challenges and a common solution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2872-2880.	4.0	124
108	Complete Genome Sequence of Ikoma Lyssavirus. Journal of Virology, 2012, 86, 10242-10243.	3.4	21

#	Article	IF	CITATIONS
109	The implications of metapopulation dynamics on the design of vaccination campaigns. Vaccine, 2012, 30, 1014-1022.	3.8	23
110	The effect of protected areas on pathogen exposure in endangered African wild dog (Lycaon pictus) populations. Biological Conservation, 2012, 150, 15-22.	4.1	44
111	Evaluation of a Direct, Rapid Immunohistochemical Test for Rabies Diagnosis. Emerging Infectious Diseases, 2012, 12, 310-313.	4.3	162
112	<i>Rickettsia felis</i> lnfection in Febrile Patients, Western Kenya, 2007–2010. Emerging Infectious Diseases, 2012, 18, 328-331.	4.3	82
113	Spatial and temporal patterns of neutral and adaptive genetic variation in the endangered African wild dog (<i>Lycaon pictus</i>). Molecular Ecology, 2012, 21, 1379-1393.	3.9	63
114	lkoma Lyssavirus, Highly Divergent Novel Lyssavirus in an African Civet1. Emerging Infectious Diseases, 2012, 18, 664-7.	4.3	99
115	Renewed Global Partnerships and Redesigned Roadmaps for Rabies Prevention and Control. Veterinary Medicine International, 2011, 2011, 1-18.	1.5	66
116	Predictability of anthrax infection in the Serengeti, Tanzania. Journal of Applied Ecology, 2011, 48, 1333-1344.	4.0	92
117	Zoonoses and marginalised infectious diseases of poverty: Where do we stand?. Parasites and Vectors, 2011, 4, 106.	2.5	122
118	Serologic Surveillance of Anthrax in the Serengeti Ecosystem, Tanzania, 1996–2009. Emerging Infectious Diseases, 2011, 17, 387-394.	4.3	77
119	Metapopulation dynamics of rabies and the efficacy of vaccination. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2182-2190.	2.6	47
120	Evaluation of Cost-Effective Strategies for Rabies Post-Exposure Vaccination in Low-Income Countries. PLoS Neglected Tropical Diseases, 2011, 5, e982.	3.0	97
121	Quantifying Risk Factors for Human Brucellosis in Rural Northern Tanzania. PLoS ONE, 2010, 5, e9968.	2.5	98
122	The Feasibility of Canine Rabies Elimination in Africa: Dispelling Doubts with Data. PLoS Neglected Tropical Diseases, 2010, 4, e626.	3.0	299
123	Quantifying the Burden of Rhodesiense Sleeping Sickness in Urambo District, Tanzania. PLoS Neglected Tropical Diseases, 2010, 4, e868.	3.0	28
124	Catalysing action against rabies. Veterinary Record, 2010, 167, 422-423.	0.3	10
125	Transmission Dynamics and Prospects for the Elimination of Canine Rabies. PLoS Biology, 2009, 7, e1000053.	5.6	374
126	EPIDEMIOLOGY, PATHOLOGY, AND GENETIC ANALYSIS OF A CANINE DISTEMPER EPIDEMIC IN NAMIBIA. Journal of Wildlife Diseases, 2009, 45, 1008-1020.	0.8	29

#	Article	IF	Citations
127	Professor Simon Jeremy Thirgood. Journal of Applied Ecology, 2009, 46, 948-949.	4.0	O
128	Evaluating the cost-effectiveness of rabies post-exposure prophylaxis: A case study in Tanzania. Vaccine, 2009, 27, 7167-7172.	3.8	46
129	A cross-sectional study of factors associated with dog ownership in Tanzania. BMC Veterinary Research, 2008, 4, 5.	1.9	66
130	Exploring reservoir dynamics: a case study of rabies in the Serengeti ecosystem. Journal of Applied Ecology, 2008, 45, 1246-1257.	4.0	166
131	Rabies in Britain. Veterinary Record, 2008, 162, 220-220.	0.3	0
132	Development of an Item Scale to Assess Attitudes towards Domestic Dogs in the United Republic of Tanzania. Anthrozoos, 2008, 21, 285-295.	1.4	7
133	Lessons from the 2006–2007 Rift Valley fever outbreak in East Africa: implications for prevention of emerging infectious diseases. Future Virology, 2008, 3, 411-417.	1.8	32
134	Rabies Exposures, Post-Exposure Prophylaxis and Deaths in a Region of Endemic Canine Rabies. PLoS Neglected Tropical Diseases, 2008, 2, e339.	3.0	176
135	Sleeping sickness—A re-emerging disease in the Serengeti?. Travel Medicine and Infectious Disease, 2007, 5, 117-124.	3.0	37
136	A framework for evaluating animals as sentinels for infectious disease surveillance. Journal of the Royal Society Interface, 2007, 4, 973-984.	3.4	103
137	The Conservation Relevance of Epidemiological Research into Carnivore Viral Diseases in the Serengeti. Conservation Biology, 2007, 21, 612-622.	4.7	73
138	Health-seeking behaviour of human brucellosis cases in rural Tanzania. BMC Public Health, 2007, 7, 315.	2.9	74
139	Mycobacterium bovis in rural Tanzania: Risk factors for infection in human and cattle populations. Tuberculosis, 2007, 87, 30-43.	1.9	146
140	Animal movements and the spread of infectious diseases. Trends in Microbiology, 2006, 14, 125-131.	7.7	345
141	Canine vaccination—Providing broader benefits for disease control. Veterinary Microbiology, 2006, 117, 43-50.	1.9	160
142	Re-evaluating the burden of rabies in Africa and Asia. Bulletin of the World Health Organization, 2005, 83, 360-8.	3.3	771
143	Infectious Diseases of Wildlife: Detection, Diagnosis and Management. Tropical Animal Health and Production, 2004, 36, 205-206.	1.4	0
144	Estimating the Public Health Impact of Rabies. Emerging Infectious Diseases, 2004, 10, 140-142.	4.3	48

#	Article	IF	CITATIONS
145	Estimating the Public Health Impact of Rabies. Emerging Infectious Diseases, 2004, 10, 140-142.	4.3	119
146	Identifying Reservoirs of Infection: A Conceptual and Practical Challenge. Emerging Infectious Diseases, 2002, 8, 1468-1473.	4.3	630
147	Estimating human rabies mortality in the United Republic of Tanzania from dog bite injuries. Bulletin of the World Health Organization, 2002, 80, 304-10.	3.3	174
148	Pathogens as allies in island conservation?. Trends in Ecology and Evolution, 1999, 14, 83-84.	8.7	11
149	A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature, 1996, 379, 441-445.	27.8	671
150	Relationships between vaccinations, herd introductions, and livestock losses in Northern Tanzania. Agricultural and Resource Economics Review, 0, , 1-19.	1.1	1
151	A hundred years of rabies in Kenya and the strategy for eliminating dog-mediated rabies by 2030. AAS Open Research, 0, 1, 23.	1.5	4
152	Where Rabies Is Not a Disease. Bridging Healthworlds to Improve Mutual Understanding and Prevention of Rabies. Frontiers in Veterinary Science, 0, 9, .	2.2	5
153	The Impact of the First Year of the COVID-19 Pandemic on Canine Rabies Control Efforts: A Mixed-Methods Study of Observations About the Present and Lessons for the Future. Frontiers in Tropical Diseases, $0, 3, .$	1.4	6