Sheryl L Wiskur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2612516/publications.pdf

Version: 2024-02-01

394421 501196 2,335 31 19 28 citations g-index h-index papers 37 37 37 2193 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploration of silicon phthalocyanines as viable photocatalysts for organic transformations. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 422, 113547.	3.9	5
2	Mechanistic investigations of alcohol silylation with isothiourea catalysts. Organic and Biomolecular Chemistry, 2021, 19, 10181-10188.	2.8	1
3	Polymer compositions on kinetic resolution of secondary alcohols using polymer-supported silyl chlorides. Polymer Chemistry, 2020, 11, 5011-5018.	3.9	O
4	Cycloaddition/Electrocyclic Ring Opening Sequence between Alkynyl Sulfides and Azodicarboxylates To Provide <i>N</i> , <i>N</i> -Dicarbamoyl 2-Iminothioimidates. Journal of Organic Chemistry, 2019, 84, 9734-9743.	3.2	6
5	Investigation of Electrostatic Interactions towards Controlling Silylationâ€Based Kinetic Resolutions. European Journal of Organic Chemistry, 2019, 2019, 4827-4831.	2.4	5
6	Understanding Internal Chirality Induction of Triarylsilyl Ethers Formed from Enantiopure Alcohols. Journal of Organic Chemistry, 2016, 81, 8187-8193.	3.2	22
7	Polymers and Kinetic Resolutions: The Insolubility of It All. ChemCatChem, 2016, 8, 879-885.	3.7	6
8	Polystyreneâ€Supported Triphenylsilyl Chloride for the Silylationâ€Based Kinetic Resolution of Secondary Alcohols. ChemCatChem, 2015, 7, 1527-1530.	3.7	15
9	Diastereoselective and Enantioselective Silylation of 2-Arylcyclohexanols. Organic Letters, 2015, 17, 2408-2411.	4.6	38
10	Linear Free-Energy Relationship and Rate Study on a Silylation-Based Kinetic Resolution: Mechanistic Insights. Journal of Organic Chemistry, 2014, 79, 2384-2396.	3.2	43
11	Structure–Activity Relationship of Formamides as Organocatalysts: The Significance of Formamide Structure and Conformation. European Journal of Organic Chemistry, 2013, 2013, 2279-2283.	2.4	5
12	Chiral pyridinyloxazolidine ligands and copper chloride complexes. Journal of Coordination Chemistry, 2013, 66, 1166-1177.	2.2	3
13	Silylation-Based Kinetic Resolution of α-Hydroxy Lactones and Lactams. Organic Letters, 2013, 15, 6132-6135.	4.6	42
14	Obtaining Enriched Compounds via a Tandem Enantioselective Reaction and Kinetic Resolution Polishing Sequence. Journal of Organic Chemistry, 2012, 77, 3570-3575.	3.2	8
15	Silylation-Based Kinetic Resolution of Monofunctional Secondary Alcohols. Organic Letters, 2011, 13, 3794-3797.	4.6	71
16	Mechanistic investigations of the Mukaiyama aldol reaction as a two part enantioselective reaction. Tetrahedron Letters, 2009, 50, 1164-1166.	1.4	19
17	Catalytic Asymmetric Synthesis of Esters from Ketenes ChemInform, 2005, 36, no.	0.0	O
18	Catalytic Asymmetric Synthesis of Esters from Ketenes. Journal of the American Chemical Society, 2005, 127, 6176-6177.	13.7	118

#	Article	IF	CITATIONS
19	Thermodynamic Analysis of Receptors Based on Guanidinium/Boronic Acid Groups for the Complexation of Carboxylates, î±-Hydroxycarboxylates, and Diols: Driving Force for Binding and Cooperativity. Chemistry - A European Journal, 2004, 10, 3792-3804.	3.3	139
20	Cross-Couplings of Alkyl Electrophiles under "Ligandless―Conditions: Negishi Reactions of Organozirconium Reagents. Journal of the American Chemical Society, 2004, 126, 82-83.	13.7	90
21	Tuning the Specificity of a Synthetic Receptor Using a Selected Nucleic Acid Receptor. Journal of the American Chemical Society, 2004, 126, 16515-16519.	13.7	42
22	Threshold Detection Using Indicator-Displacement Assays:Â An Application in the Analysis of Malate in Pinot Noir Grapes. Journal of the American Chemical Society, 2004, 126, 6072-6077.	13.7	83
23	Using Indicator-Displacement Assays in Test Strips and To Follow Reaction Kinetics. Organic Letters, 2004, 6, 2499-2501.	4.6	65
24	Title is missing!. Angewandte Chemie, 2003, 115, 2116-2118.	2.0	22
25	A Multicomponent Sensing Ensemble in Solution: Differentiation between Structurally Similar Analytes. Angewandte Chemie - International Edition, 2003, 42, 2070-2072.	13.8	118
26	Citrate and calcium determination in flavored vodkas using artificial neural networks. Tetrahedron, 2003, 59, 10089-10092.	1.9	73
27	Mimicking the Mammalian Sense of Taste Through Single-Component and Multicomponent Analyte Sensors. ACS Symposium Series, 2002, , 276-288.	0.5	3
28	pKa Values and Geometries of Secondary and Tertiary Amines Complexed to Boronic AcidsImplications for Sensor Design. Organic Letters, 2001, 3, 1311-1314.	4.6	181
29	Achieving Large Color Changes in Response to the Presence of Amino Acids:  A Molecular Sensing Ensemble with Selectivity for Aspartate. Journal of the American Chemical Society, 2001, 123, 11296-11297.	13.7	200
30	Teaching Old Indicators New Tricks. Accounts of Chemical Research, 2001, 34, 963-972.	15.6	749
31	Using a Synthetic Receptor to Create an Optical-Sensing Ensemble for a Class of Analytes:Â A Colorimetric Assay for the Aging of Scotch. Journal of the American Chemical Society, 2001, 123, 10109-10110.	13.7	151