
Katheryn Meek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2612050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autophosphorylation transforms DNA-PK from protecting to processing DNA ends. Molecular Cell, 2022, 82, 177-189.e4.	9.7	44
2	Uncovering DNA-PKcs ancient phylogeny, unique sequence motifs and insights for human disease. Progress in Biophysics and Molecular Biology, 2021, 163, 87-108.	2.9	45
3	Cryo-EM of NHEJ supercomplexes provides insights into DNA repair. Molecular Cell, 2021, 81, 3400-3409.e3.	9.7	62
4	Activation of DNA-PK by hairpinned DNA ends reveals a stepwise mechanism of kinase activation. Nucleic Acids Research, 2020, 48, 9098-9108.	14.5	21
5	Deciphering the role of distinct DNA-PK phosphorylations at collapsed replication forks. DNA Repair, 2020, 94, 102925.	2.8	5
6	An Antiviral DNA Response without the STING?. Trends in Immunology, 2020, 41, 362-364.	6.8	4
7	Deciphering phenotypic variance in different models of DNA-PKcs deficiency. DNA Repair, 2019, 73, 7-16.	2.8	11
8	Characterization of human AlkB homolog 1 produced in mammalian cells and demonstration of mitochondrial dysfunction in ALKBH1-deficient cells. Biochemical and Biophysical Research Communications, 2018, 495, 98-103.	2.1	17
9	Mutational phospho-mimicry reveals a regulatory role for the XRCC4 and XLF C-terminal tails in modulating DNA bridging during classical non-homologous end joining. ELife, 2017, 6, .	6.0	35
10	The ATM Kinase Restrains Joining of Both VDJ Signal and Coding Ends. Journal of Immunology, 2016, 197, 3165-3174.	0.8	8
11	PAXX Is an Accessory c-NHEJ Factor that Associates with Ku70 and Has Overlapping Functions with XLF. Cell Reports, 2016, 17, 541-555.	6.4	77
12	Redundant function of DNA ligase 1 and 3 in alternative end-joining during immunoglobulin class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1261-1266.	7.1	48
13	Restoration of ATM Expression in DNA-PKcs–Deficient Cells Inhibits Signal End Joining. Journal of Immunology, 2016, 196, 3032-3042.	0.8	24
14	DNA-PKcs and PARP1 Bind to Unresected Stalled DNA Replication Forks Where They Recruit XRCC1 to Mediate Repair. Cancer Research, 2016, 76, 1078-1088.	0.9	71
15	XRCC4/XLF Interaction Is Variably Required for DNA Repair and Is Not Required for Ligase IV Stimulation. Molecular and Cellular Biology, 2015, 35, 3017-3028.	2.3	50
16	Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis. Bioscience Reports, 2014, 34, .	2.4	51
17	Unraveling the Complexities of DNA-Dependent Protein Kinase Autophosphorylation. Molecular and Cellular Biology, 2014, 34, 2162-2175.	2.3	58
18	DNA Damage: Offing KAP to Stay Focused in the Dark. Current Biology, 2014, 24, R392-R394.	3.9	0

Katheryn Meek

#	Article	IF	CITATIONS
19	N-terminal constraint activates the catalytic subunit of the DNA-dependent protein kinase in the absence of DNA or Ku. Nucleic Acids Research, 2012, 40, 2964-2973.	14.5	27
20	XRCC4's interaction with XLF is required for coding (but not signal) end joining. Nucleic Acids Research, 2012, 40, 1684-1694.	14.5	57
21	SCID Dogs: Similar Transplant Potential but Distinct Intra-Uterine Growth Defects and Premature Replicative Senescence Compared with SCID Mice. Journal of Immunology, 2009, 183, 2529-2536.	0.8	10
22	New targets to translate DNA-PK signals. Cell Cycle, 2009, 8, 3809-3815.	2.6	4
23	Chapter 2 DNA-PK. Advances in Immunology, 2008, 99, 33-58.	2.2	213
24	trans Autophosphorylation at DNA-Dependent Protein Kinase's Two Major Autophosphorylation Site Clusters Facilitates End Processing but Not End Joining. Molecular and Cellular Biology, 2007, 27, 3881-3890.	2.3	165
25	Linking double-stranded DNA breaks to the recombination activating gene complex directs repair to the nonhomologous end-joining pathway. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17046-17051.	7.1	36
26	Rag mutations reveal robust alternative end joining. Nature, 2007, 449, 483-486.	27.8	282
27	Autophosphorylation of DNA-Dependent Protein Kinase Regulates DNA End Processing and May Also Alter Double-Strand Break Repair Pathway Choice. Molecular and Cellular Biology, 2005, 25, 10842-10852.	2.3	225
28	The DNAâ€dependent protein kinase: the director at the end. Immunological Reviews, 2004, 200, 132-141.	6.0	192
29	Autophosphorylation of the Catalytic Subunit of the DNA-Dependent Protein Kinase Is Required for Efficient End Processing during DNA Double-Strand Break Repair. Molecular and Cellular Biology, 2003, 23, 5836-5848.	2.3	291
30	SCID in Jack Russell Terriers: A New Animal Model of DNA-PKcs Deficiency. Journal of Immunology, 2001, 167, 2142-2150.	0.8	74