Regan J Thomson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/261198/publications.pdf

Version: 2024-02-01

83 papers 4,122 citations

36 h-index 59 g-index

106 all docs

106 docs citations

106 times ranked 4902 citing authors

#	Article	IF	CITATIONS
1	Recent strategies and tactics for the enantioselective total syntheses of cyclolignan natural products. Natural Product Reports, 2022, 39, 670-702.	10.3	5
2	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	8.0	81
3	Electrochemical and Photocatalytic Oxidative Coupling of Ketones via Silyl Bis-enol Ethers. Journal of Organic Chemistry, 2021, 86, 6600-6611.	3.2	9
4	Molecular Chirality and Cloud Activation Potentials of Dimeric \hat{l}_{\pm} -Pinene Oxidation Products. Journal of the American Chemical Society, 2021, 143, 16653-16662.	13.7	9
5	Ion Mobility Mass Spectrometry as an Efficient Tool for Identification of Streptorubin B in Streptomyces coelicolor M145. Journal of Natural Products, 2020, 83, 159-163.	3.0	4
6	A computational framework to explore large-scale biosynthetic diversity. Nature Chemical Biology, 2020, 16, 60-68.	8.0	569
7	Streptomyces buecherae sp. nov., an actinomycete isolated from multiple bat species. Antonie Van Leeuwenhoek, 2020, 113, 2213-2221.	1.7	6
8	Synergistic Uptake by Acidic Sulfate Particles of Gaseous Mixtures of Glyoxal and Pinanediol. Environmental Science & Environm	10.0	5
9	Genome Mining and Metabolomics Uncover a Rare d-Capreomycidine Containing Natural Product and Its Biosynthetic Gene Cluster. ACS Chemical Biology, 2020, 15, 3013-3020.	3.4	9
10	Access to α-Pyrazole and α-Triazole Derivatives of Ketones from Oxidative Heteroarylation of Silyl Enolethers. Organic Letters, 2020, 22, 8055-8058.	4.6	5
11	Liquid–liquid phase separation and morphologies in organic particles consisting of <i>α</i> -caryophyllene ozonolysis products and mixtures with commercially available organic compounds. Atmospheric Chemistry and Physics, 2020, 20, 11263-11273.	4.9	6
12	Surface-Active \hat{l}^2 -Caryophyllene Oxidation Products at the Air/Aqueous Interface. ACS Earth and Space Chemistry, 2019, 3, 1740-1748.	2.7	8
13	Synthesis and surface spectroscopy of $\hat{l}\pm$ -pinene isotopologues and their corresponding secondary organic material. Chemical Science, 2019, 10, 8390-8398.	7.4	8
14	Diene Synthesis by the Reductive Transposition of 1,2-Allenols. Synlett, 2019, 30, 2073-2076.	1.8	5
15	Atmospheric \hat{l}^2 -Caryophyllene-Derived Ozonolysis Products at Interfaces. ACS Earth and Space Chemistry, 2019, 3, 158-169.	2.7	10
16	Discovery of the Tyrobetaine Natural Products and Their Biosynthetic Gene Cluster <i>via</i> Metabologenomics. ACS Chemical Biology, 2018, 13, 1029-1037.	3.4	38
17	Following Particle-Particle Mixing in Atmospheric Secondary Organic Aerosols by Using Isotopically Labeled Terpenes. CheM, 2018, 4, 318-333.	11.7	40
18	A Strategy for the Convergent and Stereoselective Assembly of Polycyclic Molecules. Journal of the American Chemical Society, 2018, 140, 1956-1965.	13.7	58

#	Article	IF	CITATIONS
19	Total Synthesis of Tambromycin Enabled by Indole C–H Functionalization. Organic Letters, 2018, 20, 2369-2373.	4.6	24
20	Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science, 2018, 4, 1727-1741.	11.3	32
21	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	53
22	Natural products from thioester reductase containing biosynthetic pathways. Natural Product Reports, 2018, 35, 847-878.	10.3	60
23	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	22
24	Orientations of nonlocal vibrational modes from combined experimental and theoretical sum frequency spectroscopy. Chemical Physics Letters, 2017, 683, 199-204.	2.6	8
25	Enantioselective Synthesis of Allenes by Catalytic Traceless Petasis Reactions. Journal of the American Chemical Society, 2017, 139, 1998-2005.	13.7	99
26	Highly Oxygenated Multifunctional Compounds in \hat{l}_{\pm} -Pinene Secondary Organic Aerosol. Environmental Science & Science amp; Technology, 2017, 51, 5932-5940.	10.0	93
27	Unanticipated Stickiness of α-Pinene. Journal of Physical Chemistry A, 2017, 121, 3239-3246.	2.5	14
28	Triflimide-catalyzed allylsilane annulations of benzylic alcohols for the divergent synthesis of indanes and tetralins. Chemical Science, 2017, 8, 2156-2160.	7.4	20
29	Asymmetric Traceless Petasis Boronoâ€Mannich Reactions of Enals: Reductive Transposition of Allylic Diazenes. Angewandte Chemie, 2017, 129, 16858-16862.	2.0	3
30	Asymmetric Traceless Petasis Boronoâ€Mannich Reactions of Enals: Reductive Transposition of Allylic Diazenes. Angewandte Chemie - International Edition, 2017, 56, 16631-16635.	13.8	21
31	Cloud Activation Potentials for Atmospheric Î \pm -Pinene and Î 2 -Caryophyllene Ozonolysis Products. ACS Central Science, 2017, 3, 715-725.	11.3	40
32	<i>In Vitro</i> Reconstruction of Nonribosomal Peptide Biosynthesis Directly from DNA Using Cell-Free Protein Synthesis. ACS Synthetic Biology, 2017, 6, 39-44.	3.8	80
33	The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic–water particles. Atmospheric Chemistry and Physics, 2017, 17, 8509-8524.	4.9	35
34	Vibrational Mode Assignment of \hat{l}_{\pm} -Pinene by Isotope Editing: One Down, Seventy-One To Go. Journal of Physical Chemistry A, 2016, 120, 2684-2690.	2.5	29
35	Elucidating the Rimosamide-Detoxin Natural Product Families and Their Biosynthesis Using Metabolite/Gene Cluster Correlations. ACS Chemical Biology, 2016, 11, 3452-3460.	3.4	42
36	Structure, Chemical Synthesis, and Biosynthesis of Prodiginine Natural Products. Chemical Reviews, 2016, 116, 7818-7853.	47.7	126

#	Article	IF	Citations
37	New Aspercryptins, Lipopeptide Natural Products, Revealed by HDAC Inhibition in <i>Aspergillus nidulans</i> . ACS Chemical Biology, 2016, 11, 2117-2123.	3.4	56
38	Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulations Reveal a Rotationally Fluid Adsorption State of \hat{l}_{\pm} -Pinene on Silica. Journal of Physical Chemistry C, 2016, 120, 12578-12589.	3.1	29
39	Metabologenomics: Correlation of Microbial Gene Clusters with Metabolites Drives Discovery of a Nonribosomal Peptide with an Unusual Amino Acid Monomer. ACS Central Science, 2016, 2, 99-108.	11.3	99
40	Assessment of DFT for Computing Sum Frequency Generation Spectra of an Epoxydiol and a Deuterated Isotopologue at Fused Silica/Vapor Interfaces. Journal of Physical Chemistry B, 2016, 120, 1919-1927.	2.6	17
41	On Surface Order and Disorder of α-Pinene-Derived Secondary Organic Material. Journal of Physical Chemistry A, 2015, 119, 4609-4617.	2.5	27
42	Accurate Line Shapes from Sub-1 cm ^{–1} Resolution Sum Frequency Generation Vibrational Spectroscopy of α-Pinene at Room Temperature. Journal of Physical Chemistry A, 2015, 119, 1292-1302.	2.5	49
43	Uptake of Epoxydiol Isomers Accounts for Half of the Particle-Phase Material Produced from Isoprene Photooxidation via the HO ₂ Pathway. Environmental Science & December 2015, 49, 250-258.	10.0	48
44	Investigations into Apopinene as a Biorenewable Monomer for Ring-Opening Metathesis Polymerization. ACS Sustainable Chemistry and Engineering, 2015, 3, 1278-1281.	6.7	26
45	Beyond Local Group Modes in Vibrational Sum Frequency Generation. Journal of Physical Chemistry A, 2015, 119, 3407-3414.	2.5	18
46	Large-Scale Metabolomics Reveals a Complex Response of <i>Aspergillus nidulans</i> to Epigenetic Perturbation. ACS Chemical Biology, 2015, 10, 1535-1541.	3.4	90
47	SAMDI Mass Spectrometry-Enabled High-Throughput Optimization of a Traceless Petasis Reaction. ACS Combinatorial Science, 2015, 17, 658-662.	3.8	26
48	Total Synthesis of the <i>Galbulimima</i> Alkaloids Himandravine and GB17 Using Biomimetic Diels–Alder Reactions of Double Diene Precursors. Journal of the American Chemical Society, 2015, 137, 11197-11204.	13.7	24
49	Enantioselective synthesis of metacycloprodigiosin via the †Wasserman pyrrole'. Tetrahedron Letters, 2015, 56, 3228-3230.	1.4	7
50	Enantioselective Total Synthesis of (â^')-Maoecrystal V. Journal of the American Chemical Society, 2014, 136, 17750-17756.	13.7	78
51	Total Synthesis of the <i>lsodon</i> Diterpene Sculponeatinâ€N. Angewandte Chemie - International Edition, 2014, 53, 2988-2991.	13.8	67
52	Total synthesis of propolisbenzofuran B. Chemical Science, 2014, 5, 1794-1798.	7.4	15
53	Stereocontrolled Syntheses of Tetralone―and Naphthylâ€Type Lignans by a Oneâ€Pot Oxidative [3,3]â€Rearrangement/Friedel–Crafts Arylation. Angewandte Chemie - International Edition, 2014, 53, 1395-1398.	13.8	40
54	The Total Synthesis of <i>Isodon</i> Diterpenes. Angewandte Chemie - International Edition, 2014, 53, 10588-10599.	13.8	82

#	Article	IF	CITATIONS
55	Elimination of Butylcycloheptylprodigiosin as a Known Natural Product Inspired by an Evolutionary Hypothesis for Cyclic Prodigiosin Biosynthesis. Journal of Natural Products, 2013, 76, 1937-1945.	3.0	15
56	Mechanism of triflimide-catalyzed [3,3]-sigmatropic rearrangements of N-allylhydrazonesâ€"predictions and experimental validation. Chemical Science, 2013, 4, 3997.	7.4	20
57	Evaluation of  east-to-west' ether-forming strategies for the total synthesis of maoecrystal V. Tetrahedron Letters, 2013, 54, 635-637.	1.4	26
58	Proteomics Guided Discovery of Flavopeptins: Anti-proliferative Aldehydes Synthesized by a Reductase Domain-Containing Non-ribosomal Peptide Synthetase. Journal of the American Chemical Society, 2013, 135, 10449-10456.	13.7	28
59	Gobichelin A and B: mixed-ligandsiderophores discovered using proteomics. MedChemComm, 2013, 4, 233-238.	3.4	30
60	Organic Constituents on the Surfaces of Aerosol Particles from Southern Finland, Amazonia, and California Studied by Vibrational Sum Frequency Generation. Journal of Physical Chemistry A, 2012, 116, 8271-8290.	2.5	41
61	A Direct Synthesis of Allenes by a Traceless Petasis Reaction. Journal of the American Chemical Society, 2012, 134, 5782-5785.	13.7	96
62	Oxidative Coupling of Enolates, Enol Silanes, and Enamines: Methods and Natural Product Synthesis. European Journal of Organic Chemistry, 2012, 2012, 4881-4896.	2.4	124
63	Total Synthesis of the <i>Galbulimima</i> Alkaloid (â^')â€GB17. Angewandte Chemie - International Edition, 2012, 51, 2481-2484.	13.8	24
64	An Oxidative [2,3]-Sigmatropic Rearrangement of Allylic Hydrazides. Journal of the American Chemical Society, 2011, 133, 14252-14255.	13.7	28
65	Enantioselective Synthesis of Biphenols from 1,4-Diketones by Traceless Central-to-Axial Chirality Exchange. Journal of the American Chemical Society, 2011, 133, 18-20.	13.7	175
66	Enantioselective Total Synthesis and Confirmation of the Absolute and Relative Stereochemistry of Streptorubin B. Journal of the American Chemical Society, 2011, 133, 1799-1804.	13.7	57
67	A Hypervalent Iodideâ€Initiated Fragment Coupling Cascade of <i>N</i> â€Allylhydrazones. Angewandte Chemie - International Edition, 2011, 50, 4437-4440.	13.8	47
68	Enantioselective Total Synthesis and Studies into the Configurational Stability of Bismurrayaquinoneâ€A. Angewandte Chemie - International Edition, 2011, 50, 9931-9934.	13.8	62
69	Triflimide-catalysed sigmatropic rearrangement of N-allylhydrazones as an example of a traceless bond construction. Nature Chemistry, 2010, 2, 294-297.	13.6	44
70	A Synthesis of the Carbocyclic Core of Maoecrystal V. Organic Letters, 2010, 12, 3010-3013.	4.6	46
71	Development of a Merged Conjugate Addition/Oxidative Coupling Sequence. Application to the Enantioselective Total Synthesis of Metacycloprodigiosin and Prodigiosin R1. Journal of the American Chemical Society, 2009, 131, 14579-14583.	13.7	82
72	Oxidative Carbonâ^'Carbon Bond Formation via Allyldimethylsilyl Enol Ethers. Organic Letters, 2009, 11, 5550-5553.	4.6	15

#	Article	IF	CITATIONS
73	Stereoselective Synthesis of Dienes from <i>N</i> -Allylhydrazones. Organic Letters, 2009, 11, 465-468.	4.6	75
74	Synthesis and bioactivity of the gibberellin, 18-hydroxy-GA1 (GA132). Organic and Biomolecular Chemistry, 2008, 6, 1416.	2.8	1
75	Diastereoselective Oxidative Carbonâ^'Carbon Bond Formation via Silyl Bis-enol Ethers. Organic Letters, 2008, 10, 5621-5624.	4.6	62
76	Tandem Carbonâ^'Carbon and Carbonâ^'Chlorine Bond Formation by Cu(II) Chloride-Promoted [3,3] Sigmatropic Rearrangement of N-Allylhydrazones. Journal of the American Chemical Society, 2008, 130, 1148-1149.	13.7	38
77	Oxidative Carbonâ^'Carbon Bond Formation via Silyl Bis-enol Ethers:  Controlled Cross-Coupling for the Synthesis of Quaternary Centers. Organic Letters, 2007, 9, 4667-4669.	4.6	73
78	Enantioselective Total Synthesis of the Osteoclastogenesis Inhibitor (+)-Symbioimine. Angewandte Chemie - International Edition, 2007, 46, 3104-3106.	13.8	27
79	Synthesis and confirmation of structure for the gibberellin GA131 (18-hydroxy-GA4). Organic and Biomolecular Chemistry, 2006, 4, 2532.	2.8	9
80	Ni(II) Tol-BINAP-Catalyzed Enantioselective Michael Reactions of \hat{I}^2 -Ketoesters and UnsaturatedN-Acylthiazolidinethiones. Journal of the American Chemical Society, 2005, 127, 10816-10817.	13.7	72
81	Ni(II) Tol-BINAP-Catalyzed Enantioselective Orthoester Alkylations of N-Acylthiazolidinethiones. Journal of the American Chemical Society, 2005, 127, 10506-10507.	13.7	81
82	Total Synthesis of Sordaricin. Journal of Organic Chemistry, 2005, 70, 1654-1670.	3.2	52
83	Total Synthesis of Sordaricin. Organic Letters, 2003, 5, 1321-1324.	4.6	38