Gian Domenico Soraru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2611512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymerâ€Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. Journal of the American Ceramic Society, 2010, 93, 1805-1837.	3.8	752
2	Structural Characterization and High-Temperature Behavior of Silicon Oxycarbide Classes Prepared from Sol-Gel Precursors Containing Si-H Bonds. Journal of the American Ceramic Society, 1995, 78, 379-387.	3.8	259
3	Chemical Durability of Silicon Oxycarbide Glasses. Journal of the American Ceramic Society, 2002, 85, 1529-1536.	3.8	214
4	Structural evolutions from polycarbosilane to SiC ceramic. Journal of Materials Science, 1990, 25, 3886-3893.	3.7	176
5	Systematic Structural Characterization of the High-Temperature Behavior of Nearly Stoichiometric Silicon Oxycarbide Glasses. Chemistry of Materials, 2004, 16, 2585-2598.	6.7	171
6	Mechanical Characterization of Sol-Gel-Derived Silicon Oxycarbide Glasses. Journal of the American Ceramic Society, 1996, 79, 2074-2080.	3.8	163
7	Organically Modified SiO2â^B2O3 Gels Displaying a High Content of Borosiloxane (Bâ^'Oâ^'Siâ‹®) Bonds. Chemistry of Materials, 1999, 11, 910-919.	6.7	152
8	Phase Separation in an SiCO Glass Studied by Transmission Electron Microscopy and Electron Energy‣oss Spectroscopy. Journal of the American Ceramic Society, 2001, 84, 1073-1080.	3.8	147
9	High Temperature Behavior of a Gel-Derived SiOC Glass: Elasticity and Viscosity. Journal of Sol-Gel Science and Technology, 1999, 14, 87-94.	2.4	139
10	New Insights on the High-Temperature Nanostructure Evolution of SiOC and B-Doped SiBOC Polymer-Derived Glasses. Chemistry of Materials, 2007, 19, 5694-5702.	6.7	123
11	XPS characterization of gel-derived silicon oxycarbide glasses. Materials Letters, 1996, 27, 1-5.	2.6	122
12	Creep Viscosity and Stress Relaxation of Gelâ€Derived Silicon Oxycarbide Glasses. Journal of the American Ceramic Society, 2001, 84, 1052-1058.	3.8	119
13	Microstructural and mechanical characterization of sol gel-derived Si–O–C glasses. Journal of the European Ceramic Society, 2002, 22, 2389-2400.	5.7	108
14	High Rate Capability of SiOC Ceramic Aerogels with Tailored Porosity as Anode Materials for Li-ion Batteries. Electrochimica Acta, 2015, 157, 41-45.	5.2	105
15	Lithium insertion into dense and porous carbon-rich polymer-derived SiOC ceramics. Journal of the European Ceramic Society, 2012, 32, 2495-2503.	5.7	104
16	New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials. Electrochimica Acta, 2014, 119, 78-85.	5.2	99
17	High Temperature Stability of Sol-Gel-Derived SiOC Glasses. Journal of Sol-Gel Science and Technology, 1999, 14, 69-74.	2.4	95
18	Pyrolysis Kinetics for the Conversion of a Polymer into an Amorphous Silicon Oxycarbide Ceramic. Journal of the American Ceramic Society, 2002, 85, 2181-2187.	3.8	90

#	Article	IF	CITATIONS
19	Silicon oxycarbide glasses from gels. Journal of Sol-Gel Science and Technology, 1994, 2, 843-848.	2.4	87
20	Preparation of Ultrathin-Walled Carbon-Based Nanoporous Structures by Etching Pseudo-Amorphous Silicon Oxycarbide Ceramics. Journal of the American Ceramic Society, 2006, 89, 2473-2480.	3.8	85
21	White Luminescence from Sol–Gelâ€Đerived SiOC Thin Films. Journal of the American Ceramic Society, 2009, 92, 2969-2974.	3.8	85
22	Role of Precursor Molecular Structure on the Microstructure and High Temperature Stability of Silicon Oxycarbide Glasses Derived from Methylene-Bridged Polycarbosilanes. Chemistry of Materials, 1998, 10, 4047-4054.	6.7	81
23	Crystallization Behavior of Novel Silicon Boron Oxycarbide Glasses. Journal of the American Ceramic Society, 2004, 87, 203-208.	3.8	76
24	Hybrid RSiO1.5/B2O3 Gels from Modified Silicon Alkoxides and Boric Acid. Journal of Sol-Gel Science and Technology, 2000, 18, 11-19.	2.4	75
25	The Li-storage capacity of SiOC glasses with and without mixed silicon oxycarbide bonds. Journal of Materials Chemistry A, 2018, 6, 93-103.	10.3	75
26	The role of carbon in unexpected visco(an)elastic behavior of amorphous silicon oxycarbide above 1273K. Journal of Non-Crystalline Solids, 2005, 351, 2238-2243.	3.1	73
27	Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels. Journal of Sol-Gel Science and Technology, 2010, 54, 105-117.	2.4	73
28	Transmission Electron Microscopy and Electron Energyâ€Loss Spectroscopy Study of Nonstoichiometric Siliconâ€Carbonâ€Oxygen Glasses. Journal of the American Ceramic Society, 2001, 84, 2189-2196.	3.8	72
29	Introduction to the Special Topical Issue on Ultrahighâ€Temperature Polymerâ€Derived Ceramics. Journal of the American Ceramic Society, 2001, 84, 2158-2159.	3.8	71
30	Pyrolysis study of methyl-substituted Si—H containing gels as precursors for oxycarbide glasses, by combined thermogravimetry, gas chromatographic and mass spectrometric analysis. Journal of Materials Chemistry, 1996, 6, 585-594.	6.7	70
31	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 279-283.	2.4	67
32	Tailoring of SiOC composition as a way to better performing anodes for Li-ion batteries. Solid State lonics, 2014, 260, 94-100.	2.7	66
33	Influence of the polymer architecture on the high temperature behavior of SiCO glasses: A comparison between linear- and cyclic-derived precursors. Journal of Non-Crystalline Solids, 2010, 356, 132-140.	3.1	65
34	Novel polysiloxane and polycarbosilane aerogels via hydrosilylation of preceramic polymers. Journal of Materials Chemistry, 2012, 22, 7676.	6.7	65
35	Chemical Characterization of Si-Al-C-O Precursor and Its Pyrolysis. Journal of the American Ceramic Society, 1991, 74, 1725-1728.	3.8	63
36	Gas Sensing Behavior of Mesoporous <scp><scp>SiOC</scp></scp> Glasses. Journal of the American Ceramic Society, 2013, 96, 2366-2369.	3.8	63

GIAN DOMENICO SORARU

#	Article	IF	CITATIONS
37	Structural concepts on new amorphous covalent solids. Journal of Non-Crystalline Solids, 1988, 106, 256-261.	3.1	62
38	Processing of preceramic polymer to low density silicon carbide foam. Materials and Design, 2017, 116, 278-286.	7.0	62
39	Synthesis of a polycyclic silazane network and its evolution to silicon carbonitride glass. Journal of Non-Crystalline Solids, 2002, 304, 76-83.	3.1	61
40	Polymerâ€derived SiCN cellular structures from replica of 3D printed lattices. Journal of the American Ceramic Society, 2018, 101, 2732-2738.	3.8	60
41	Passive Oxidation of an Effluent System: The Case of Polymer-Derived SiCO. Journal of the American Ceramic Society, 2005, 88, 339-345.	3.8	59
42	Synthesis and characterization of polymer-derived SiCN aerogel. Journal of the European Ceramic Society, 2015, 35, 3295-3302.	5.7	59
43	Sol-gel synthesis of SiBOC glasses. Journal of Non-Crystalline Solids, 1998, 224, 173-183.	3.1	55
44	Study of the pyrolysis process of an hybrid CH3SiO1.5 gel into a SiCO glass. Vibrational Spectroscopy, 2007, 45, 61-68.	2.2	54
45	Silicon Oxycarbide Classes from Sol-Gel Precursors. Materials Research Society Symposia Proceedings, 1992, 271, 789.	0.1	53
46	Comparison of Ion Irradiation Effects in Siliconâ€Based Preceramic Thin Films. Journal of the American Ceramic Society, 2000, 83, 713-720.	3.8	53
47	Characterization of methyl-substituted silica gels with Si–H functionalities. Journal of Materials Chemistry, 1995, 5, 1363-1374.	6.7	52
48	New Insights into Understanding Irreversible and Reversible Lithium Storage within SiOC and SiCN Ceramics. Nanomaterials, 2015, 5, 233-245.	4.1	51
49	Polymer-derived SiOC aerogel with hierarchical porosity through HF etching. Ceramics International, 2016, 42, 11805-11809.	4.8	48
50	Structural Design of Polymerâ€Đerived Si <scp>OC</scp> Ceramic Aerogels for Highâ€Rate Li Ion Storage Applications. Journal of the American Ceramic Society, 2016, 99, 2977-2983.	3.8	47
51	Controlled Mesoporosity in <scp><scp>SiOC</scp> via Chemically Bonded Polymeric "Spacers― Journal of the American Ceramic Society, 2013, 96, 2785-2792.</scp>	3.8	46
52	Silicon oxycarbide ceramics as anodes for lithium ion batteries: influence of carbon content on lithium storage capacity. RSC Advances, 2016, 6, 104597-104607.	3.6	46
53	Polymerâ€derived ceramic aerogels as sorbent materials for the removal of organic dyes from aqueous solutions. Journal of the American Ceramic Society, 2018, 101, 821-830.	3.8	46
54	Novel SiC/C Aerogels Through Pyrolysis of Polycarbosilane Precursors. Advanced Engineering Materials, 2014, 16, 814-819.	3.5	44

#	Article	IF	CITATIONS
55	Hierarchically porous polymer derived ceramics: A promising platform for multidrug delivery systems. Materials and Design, 2018, 140, 37-44.	7.0	44
56	Si nanocrystals obtained through polymer pyrolysis. Applied Physics Letters, 2003, 83, 749-751.	3.3	43
57	Influence of the microstructure on the high temperature behaviour of gel-derived SiOC glasses. Journal of the European Ceramic Society, 2001, 21, 817-824.	5.7	41
58	High surface area carbonous components from emulsion derived SiOC and their gas sensing behavior. Journal of the European Ceramic Society, 2015, 35, 4447-4452.	5.7	41
59	Si-Al-O-N Fibers from Polymeric Precursor: Synthesis, Structural, and Mechanical Characterization. Journal of the American Ceramic Society, 1993, 76, 2595-2600.	3.8	38
60	29Si MAS-NMR investigation of the conversion process of a polytitanocarbosilane into SiC-TiC ceramics. Journal of Materials Science, 1990, 25, 3664-3670.	3.7	37
61	Gradient-Hierarchic-Aligned Porosity SiOC Ceramics. Scientific Reports, 2017, 7, 41049.	3.3	37
62	Influence of free carbon on the Young's modulus and hardness of polymerâ€derived silicon oxycarbide glasses. Journal of the American Ceramic Society, 2019, 102, 907-913.	3.8	37
63	Synthesis and characterization of Siî—,Zrî—,Cî—,O ceramics from polymer precursors. Journal of the European Ceramic Society, 1991, 8, 29-34.	5.7	36
64	Development of mullite-SiC nanocomposites by pyrolysis of filled polymethylsiloxane gels. Journal of the European Ceramic Society, 2000, 20, 2509-2517.	5.7	36
65	Nitrogen doped carbide derived carbon aerogels by chlorine etching of a SiCN aerogel. Journal of Materials Chemistry A, 2016, 4, 4525-4533.	10.3	36
66	Effect of pyrolysis temperature on the microstructure and thermal conductivity of polymer-derived monolithic and porous SiC ceramics. Journal of the European Ceramic Society, 2021, 41, 1151-1162.	5.7	36
67	Preparation and characterization of Fe, Cr and Co oxide films on flat glass from gels. Journal of Non-Crystalline Solids, 1984, 63, 251-259.	3.1	34
68	Synthesis and Characterization of beta'-SiAlON Ceramics from Organosilicon Polymers. Journal of the American Ceramic Society, 1991, 74, 2220-2223.	3.8	34
69	Porous silicon oxycarbide glasses from hybrid ambigels. Microporous and Mesoporous Materials, 2011, 142, 511-517.	4.4	34
70	The effect of annealing at 1400°C on the structural evolution of porous C-rich silicon (boron)oxycarbide glass. Journal of the European Ceramic Society, 2012, 32, 1751-1757.	5.7	34
71	Closed porosity ceramics and glasses. Journal of the American Ceramic Society, 2020, 103, 2941-2969.	3.8	34
72	Photoelectrochemical study of anodized TiO2 Nanotubes prepared using low and high H2O contents. Electrochimica Acta, 2015, 186, 101-111.	5.2	33

#	Article	IF	CITATIONS
73	Ion Beam Induced Conversion of Si-Based Polymers and Gels Layers into Ceramics Coatings. Journal of Sol-Gel Science and Technology, 2003, 26, 251-255.	2.4	32
74	Out-of-furnace oxidation of SiCN polymer-derived ceramic aerogel pyrolized at intermediate temperature (600–800 °C). Journal of the European Ceramic Society, 2016, 36, 423-428.	5.7	32
75	Energetics and Structure of Polymerâ€Derived <scp><scp>Si</scp></scp> –(<scp><scp>B</scp>–)<scp>a€")<scp>O</scp>–<scp>–<scp>CGlasses: Effect of the Boron Content and Pyrolysis Temperature. Journal of the American Ceramic Society, 2014, 97, 303-309</scp></scp></scp></scp>	> <u> </u>	31
76	Influence of pyrolysis atmosphere on the lithium storage properties of carbon-rich polymer derived SiOC ceramic anodes. Solid State Ionics, 2014, 262, 22-24.	2.7	31
77	Etching of SiOC ceramic foams. Advances in Applied Ceramics, 2008, 107, 106-110.	1.1	30
78	High surface area methyltriethoxysilane-derived aerogels by ambient pressure drying. Journal of Porous Materials, 2011, 18, 159-165.	2.6	30
79	Nano and micro U1-Th O2 solid solutions: From powders to pellets. Journal of Nuclear Materials, 2018, 498, 307-313.	2.7	30
80	Poly(borosilazanes) as precursors of SiBCN glasses: synthesis and high temperature properties. Journal of Non-Crystalline Solids, 2004, 348, 156-161.	3.1	29
81	Synthesis and characterization of hybrid borosiloxane gels as precursors for Si–B–O–C fibers. Journal of Sol-Gel Science and Technology, 2007, 43, 313-319.	2.4	28
82	C-rich micro/mesoporous Si(B)OC: In situ diffraction analysis of the HF etching process. Microporous and Mesoporous Materials, 2013, 172, 125-130.	4.4	28
83	Flash joining of conductive ceramics in a few seconds by flash spark plasma sintering. Journal of the European Ceramic Society, 2019, 39, 4664-4672.	5.7	28
84	Si-nanocrystals/SiO2 thin films obtained by pyrolysis of sol–gel precursors. Thin Solid Films, 2008, 516, 6804-6807.	1.8	27
85	N-doped polymer-derived Si(N)OC: The role of the N-containing precursor. Journal of Materials Research, 2015, 30, 770-781.	2.6	27
86	Processing and thermal characterization of polymer derived SiCN(O) and SiOC reticulated foams. Ceramics International, 2020, 46, 5594-5601.	4.8	27
87	Sol-gel synthesis of polymer-YSZ hybrid materials for SOFC technology. Journal of the European Ceramic Society, 2004, 24, 1371-1374.	5.7	26
88	The pyrolysis process of a polytitanocarbosilane into SiC/TiC ceramics: An XPS study. Journal of Materials Research, 1990, 5, 1958-1962.	2.6	24
89	Carbon xerogels as electrodes for supercapacitors. The influence of the catalyst concentration on the microstructure and on the electrochemical properties. Journal of Materials Science, 2012, 47, 7175-7180.	3.7	23
90	Synthesis and characterization of the first transparent silicon oxycarbide aerogel obtained through H2decarbonization. Journal of Materials Chemistry A, 2015, 3, 24405-24413.	10.3	23

#	Article	IF	CITATIONS
91	Synthesis and luminescent properties of novel Eu2+-doped silicon oxycarbide glasses. Optical Materials, 2004, 24, 601-605.	3.6	22
92	Surface Energy of Sol Gelâ€Derived Silicon Oxycarbide Glasses. Journal of the American Ceramic Society, 2011, 94, 4523-4533.	3.8	22
93	Broad-band tunable visible emission of sol–gel derived SiBOC ceramic thin films. Thin Solid Films, 2011, 519, 3822-3826.	1.8	22
94	On the shrinkage during pyrolysis of thin films and bulk components: The case of a hybrid silica gel precursor for SiOC glasses. Journal of the European Ceramic Society, 2012, 32, 627-632.	5.7	21
95	Polymer-derived SiOC replica of material extrusion-based 3-D printed plastics. Additive Manufacturing, 2020, 32, 100988.	3.0	21
96	Polymer-derived silicon nitride aerogels as shape stabilizers for low and high-temperature thermal energy storage. Journal of the European Ceramic Society, 2021, 41, 5484-5494.	5.7	21
97	Polymer-derived Si3N4 nanofelts for flexible, high temperature, lightweight and easy-manufacturable super-thermal insulators. Applied Materials Today, 2020, 20, 100648.	4.3	21
98	Processing and Thermal Shock Resistance of a Polymer-Derived MoSi2/SiCO Ceramic Composite. Journal of the American Ceramic Society, 2005, 88, 3222-3225.	3.8	20
99	Preparation of Dense and Porous Silicon Oxycarbide Submicrometerâ€Sized Spheres Using a Modified Stöber Process. Journal of the American Ceramic Society, 2011, 94, 3819-3824.	3.8	20
100	Processing, Mechanical Characterization, and Alkali Resistance of SiliconBoronOxycarbide (<scp><scp>SiBOC</scp></scp>) Glass Fibers. Journal of the American Ceramic Society, 2014, 97, 3143-3149.	3.8	19
101	Processing and characterization of polymer derived SiOC foam with hierarchical porosity by HF etching. Journal of the Ceramic Society of Japan, 2016, 124, 1023-1029.	1.1	19
102	Regenerable, innovative porous silicon-based polymer-derived ceramics for removal of methylene blue and rhodamine B from textile and environmental waters. Environmental Science and Pollution Research, 2018, 25, 10619-10629.	5.3	19
103	Polymer derived ceramic aerogels. Current Opinion in Solid State and Materials Science, 2021, 25, 100936.	11.5	19
104	Hydrolysis and polycondensation of Si(OEt)4 II. Identification of chemical species in condensed phase by mass spectrometry with fast atom bombardment. Journal of Non-Crystalline Solids, 1989, 108, 315-322.	3.1	18
105	Hot Air Permeable Preceramic Polymer Derived Reticulated Ceramic Foams. ACS Applied Polymer Materials, 2020, 2, 4118-4126.	4.4	18
106	Processing of polymer-derived silicon carbide foams and their adsorption capacity for non-steroidal anti-inflammatory drugs. Ceramics International, 2016, 42, 18937-18943.	4.8	17
107	The effect of Bâ€doping on the electrical conductivity of polymerâ€derived Si(B)OC ceramics. Journal of the American Ceramic Society, 2017, 100, 4611-4621.	3.8	17
108	Energy-Filtered TEM Study of Ostwald Ripening of Si Nanocrystals in a SiOC Glass. Journal of the American Ceramic Society, 2006, 89, 1699-1703.	3.8	16

#	Article	IF	CITATIONS
109	Effect of the pyrolysis atmosphere on the mechanical properties of polymerâ€derived SiOC and SiCN. Journal of the American Ceramic Society, 2020, 103, 6519-6530.	3.8	16
110	Synthesis and thermal evolution of polysilazane-derived SiCN(O) aerogels with variable C content stable at 1600°C. Ceramics International, 2021, 47, 8035-8043.	4.8	16
111	Electrical Conductivity of <scp><scp>SiOCN</scp> </scp> Ceramics by the Powderâ€Solutionâ€Composite Technique. Journal of the American Ceramic Society, 2014, 97, 2525-2530.	3.8	15
112	On the onset of fracture as a siliconâ€based polymer converts into the ceramic phase. Journal of the American Ceramic Society, 2019, 102, 924-929.	3.8	15
113	Cold sintering of diatomaceous earth. Journal of the American Ceramic Society, 2021, 104, 4329-4340.	3.8	15
114	Mechanical durability of a polymer concrete: a Vickers indentation study of the strength degradation process. Construction and Building Materials, 2004, 18, 561-566.	7.2	14
115	Breath figures decorated silica-based ceramic surfaces with tunable geometry from UV cross-linkable polysiloxane precursor. Journal of the European Ceramic Society, 2018, 38, 1320-1326.	5.7	14
116	Si3N4 nanofelts/paraffin composites as novel thermal energy storage architecture. Journal of Materials Science, 2021, 56, 1537-1550.	3.7	14
117	SiOC(N) Cellular Structures with Dense Struts by Integrating Fused Filament Fabrication 3D Printing with Polymerâ€Derived Ceramics. Advanced Engineering Materials, 2021, 23, 2100535.	3.5	14
118	Investigation on the oxidation process of SiCO glasses by the means of non-Rutherford backscattering spectrometry. Nuclear Instruments & Methods in Physics Research B, 2003, 211, 401-407.	1.4	13
119	Carbon nanotubes synthesis using siliceous breccia as a catalyst source. Diamond and Related Materials, 2019, 97, 107433.	3.9	13
120	Influence of sol-gel coatings on crack initiation by vickers indentation in soda-lime glass. Journal of Non-Crystalline Solids, 1988, 100, 440-446.	3.1	12
121	Effect of etch depth on strength of soda-lime glass rods by a statistical approach. Journal of the European Ceramic Society, 1993, 11, 341-346.	5.7	11
122	Novel Er-doped SiC/SiO2 nanocomposites: Synthesis via polymer pyrolysis and their optical characterization. Journal of the European Ceramic Society, 2005, 25, 277-281.	5.7	11
123	Low dielectric constant porous BN/SiCO made by pyrolysis of filled gels. Journal of the European Ceramic Society, 2007, 27, 2529-2533.	5.7	11
124	Polymer-derived Si3N4 nanofelts as a novel oil spills clean-up architecture. Journal of Environmental Chemical Engineering, 2020, 8, 104134.	6.7	11
125	Preparation and Characterization of Amorphous SiC Film by a Liquid Route. Springer Proceedings in Physics, 1989, , 66-71.	0.2	11
126	Polymer-derived Si3N4â^'ZrO2 nanocomposite powders. Journal of Materials Research, 1992, 7, 1266-1270.	2.6	10

GIAN DOMENICO SORARU

#	Article	IF	CITATIONS
127	Fabrication and characterization of polymer-derived Si2N2O-ZrO2 nanocomposite ceramics. Journal of Materials Science, 1993, 28, 6437-6441.	3.7	10
128	Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon. Applied Physics A: Materials Science and Processing, 2014, 116, 251-257.	2.3	10
129	Isoconversional kinetics of thermal oxidation of mesoporous silicon. Thermochimica Acta, 2016, 623, 65-71.	2.7	10
130	Reactive Atmosphere Synthesis of Polymerâ€Derived Si–O–C–N Aerogels and Their Cr Adsorption from Aqueous Solutions. Advanced Engineering Materials, 2018, 20, 1701130.	3.5	10
131	Electrode-dependent Joule heating in soda lime silicate glass during flash processes. Scripta Materialia, 2020, 182, 94-98.	5.2	10
132	Thermochemical heat storage performances of magnesium sulphate confined in polymer-derived SiOC aerogels. Journal of Alloys and Compounds, 2022, 895, 162592.	5.5	10
133	Solid-state field-assisted ion exchange of Ag in lithium aluminum silicate glass-ceramics: A superfast processing route toward stronger materials with antimicrobial properties. Journal of the European Ceramic Society, 2022, 42, 1750-1761.	5.7	10
134	Shedding light onto the nano- and micro-structures of B-containing SiOC glasses using high resolution TEM 3D imaging. Journal of the European Ceramic Society, 2019, 39, 3042-3050.	5.7	9
135	Effect of anionic substitution on the high temperature stability of polymerâ€derived SiOC glasses. Journal of the American Ceramic Society, 2021, 104, 3097-3104.	3.8	9
136	3D Printed SiOC(N) Ceramic Scaffolds for Bone Tissue Regeneration: Improved Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2021, 22, 13676.	4.1	9
137	Vickers Crack Nucleation of Glass Sheets Coated by Thin Silica Gel Layers. Journal of the American Ceramic Society, 1989, 72, 2388-2390.	3.8	8
138	A comparative study of microstructural development in the sol–gel derived alumina–mullite nanocomposites using colloidal silica and tetraethyl orthosilicate. Journal of Sol-Gel Science and Technology, 2011, 58, 689-697.	2.4	8
139	Gels dried under supercritical and ambient conditions: a comparative study and their subsequent conversion to silica–carbon composite aerogels. Journal of Sol-Gel Science and Technology, 2013, 67, 592-600.	2.4	8
140	Suppressing Deep Traps in Self-Organized TiO ₂ Nanotubes by Nb Doping and Optimized Water Content. Journal of the Electrochemical Society, 2016, 163, H243-H251.	2.9	8
141	Towards Porous Silicon Oxycarbide Materials: Effects of Solvents on Microstructural Features of Poly(methylhydrosiloxane)/Divynilbenzene Aerogels. Materials, 2018, 11, 2589.	2.9	8
142	First synthesis of silicon nanocrystals in amorphous silicon nitride from a preceramic polymer. Nanotechnology, 2019, 30, 255601.	2.6	8
143	Rheological behaviour of solutions affording SiO2 and SiO2/ZrO2 fibers. Journal of Non-Crystalline Solids, 1991, 134, 191-198.	3.1	7
144	On the relationship between microstructure and densification of silica gels. Journal of Non-Crystalline Solids, 2004, 343, 71-77.	3.1	7

#	Article	IF	CITATIONS
145	Solid state field-assisted silver ion exchange in porcelain stoneware: A new route toward antimicrobial tiles?. Journal of the European Ceramic Society, 2021, 41, 3755-3760.	5.7	7
146	Biogenic architectures for green, cheap, and efficient thermal energy storage and management. Renewable Energy, 2021, 178, 96-107.	8.9	7
147	Fabrication and Characterization of β-SiAION Components from Polymeric Precursors. Materials Research Society Symposia Proceedings, 1992, 287, 245.	0.1	6
148	A TG/GC/MS Study of the Structural Transformation of Hybrid Gels Containing Si-H and Si-CH3 Groups into Oxycarbide Glasses. Materials Research Society Symposia Proceedings, 1996, 435, 381.	0.1	6
149	Thermal properties of dense polymer-derived SiCN(O) glasses. Materials Letters, 2021, 288, 129336.	2.6	6
150	Fracture mechanics determination of stress profiles in Naî—,K ion-exchanged glass optical waveguides. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 119, L9-L12.	5.6	5
151	Durability against Ca(OH)2 attack of soda-lime glasses coated by various gel-deposited oxides. Journal of Non-Crystalline Solids, 1989, 111, 91-97.	3.1	5
152	Characterisation of SiCN/SiCO Glasses via SEM and TEM. Key Engineering Materials, 2001, 206-213, 2061-2064.	0.4	5
153	YSZ freestanding films from hybrid polymer–oxide composites by the sol–gel process: Influence of polymer features on ceramic microstructure. Journal of the European Ceramic Society, 2005, 25, 2647-2650.	5.7	5
154	Laser Ionization Time of Flight Mass Spectrometry Study of Silicon Oxycarbide Glasses. Journal of the American Ceramic Society, 2012, 95, 3729-3731.	3.8	5
155	High Carbon-high Porous SiOC Glasses for Room Temperature NO2 Sensing. Procedia Engineering, 2014, 87, 160-163.	1.2	5
156	Ultrasound-Assisted Hydroxyapatite-Decorated Breath-Figure Polymer-Derived Ceramic Coatings for Ti6Al4V Substrates. ACS Applied Materials & Interfaces, 2020, 12, 50772-50783.	8.0	5
157	Crystallization of glasses in the system SiO2-Li2O-TiO2-Al2O3, investigated in situ at high temperature by XRD and DTA methods. Journal of Thermal Analysis, 1984, 29, 733-743.	0.6	4
158	Influence of surface treatments on the dynamic fatigue of soda-lime glass with indentation flaws. Materials Science and Engineering, 1987, 85, L25-L29.	0.1	4
159	Effect Of SnO2 on the Mechanical Properties of SiO2/SnO2 Gel-Derived Composites. Materials Research Society Symposia Proceedings, 1990, 180, 351.	0.1	4
160	Radial Distribution Function of Amorphous Silicon Oxycarbide Compounds. Journal of Metastable and Nanocrystalline Materials, 2000, 8, 677-682.	0.1	4
161	Si-C-O Fibres in Gas Reactive Atmospheres. Advances in Science and Technology, 2010, 71, 86-91.	0.2	4
162	Microstructure development and phase evolution of alumina-mullite nanocomposite. Science of Sintering, 2013, 45, 293-303.	1.4	4

#	Article	IF	CITATIONS
163	On the pyrolysis of a methylâ€silsesquioxane in reactive CO 2 atmosphere: A TG/MS and FTâ€IR study. Journal of the American Ceramic Society, 2022, 105, 2465-2473.	3.8	4
164	Sol-gel derived SiO2-ZrO2 nanocomposite fibers: Influence of composition, thermal treatment and microstructure on tensile strength. Journal of the European Ceramic Society, 1993, 11, 439-444.	5.7	3
165	Structural Properties of Silicon Oxycarbide Powders Obtained by SOL-GEL Method. Materials Science Forum, 1999, 312-314, 411-416.	0.3	3
166	Structure/Property Relationship in Silicon Oxycarbide Glasses and Ceramics Obtained via the Sol-Gel Method. Materials Science Forum, 2002, 386-388, 359-364.	0.3	3
167	Alkali resistance of some Znî—,Al-silicate glass fibers modified with Fe and Mn or Ti oxides. Journal of Non-Crystalline Solids, 1986, 80, 351-359.	3.1	2
168	Expanded materials from quartz-porphyrite sands. Journal of Materials Science, 1987, 22, 2493-2496.	3.7	2
169	Processing and Mechanical Properties of SiC-based Ceramics From Organosilicon Polymers. , 0, , 93-102.		2
170	Novel Sulfurâ€Containing Crossâ€Linking Agent for Siâ€Based Preceramic Polymers. Macromolecular Chemistry and Physics, 2020, 221, 1900380.	2.2	2
171	Aerogels from Preceramic Polymers. , 2016, , 1-25.		2
172	Synthesis and Characterization of High Surface Area Transparent SiOC Aerogels from Hybrid Silicon Alkoxide: A Comparison between Ambient Pressure and Supercritical Drying. Materials, 2022, 15, 1277.	2.9	2
173	Spectroscopic Characterization of the Nitridation Process of Polymeric Precursors to SI-M-N-O Systems (M=Ti, Zr, Al). Materials Research Society Symposia Proceedings, 1992, 287, 239.	0.1	1
174	Xps Study of the Nitridation Process of A Polytitanocarbosilane into Si-Ti-N-O Ceramics. Materials Research Society Symposia Proceedings, 1992, 271, 899.	0.1	1
175	Viscosity behaviour of SiO2ZrO2 gelling solutions: effect of acetic anhydride addition. Journal of Non-Crystalline Solids, 1992, 147-148, 695-698.	3.1	1
176	Photoluminescence Spectroscopy of Er3+/Yb3+ Co-Activated Silica-Alumina Monolithic Xerogels. Journal of Sol-Gel Science and Technology, 2004, 32, 267-271.	2.4	1
177	Aerogels from Preceramic Polymers. , 2018, , 1013-1037.		1
178	Synthesis and Optical Properties of SiCnc/SiO2 Nanocomposite Thin Films. Ceramic Engineering and Science Proceedings, 0, , 85-91.	0.1	1
179	Solid solution enhanced electrostriction in the YSZ-GDC system. Open Ceramics, 2022, 9, 100206.	2.0	1
180	Influence of Gas-Flow Conditions on the Evolution of Thermally Insulating Si3N4 Nano-Felts. Materials, 2022, 15, 1068.	2.9	1

#	Article	IF	CITATIONS
181	Thermal Annealing and Phase Transformation of Serpentine-Like Garnierite. Minerals (Basel,) Tj ETQq1 1 0.78431	4 rgBT	/Overlock 10 Tf
182	Electrode Material Effect on the Flash Ignition in Soda-Lime Silicate Glass. Ceramics, 2021, 4, 70-82.	2.6	0