

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/260991/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Impacts of secondary aerosol formation and long range transport on severe haze during the winter of 2017 in the Seoul metropolitan area. Science of the Total Environment, 2022, 804, 149984.                                                                              | 8.0  | 10        |
| 2  | PM2.5 composition and sources in the San Joaquin Valley of California: A long-term study using ToF-ACSM with the capture vaporizer. Environmental Pollution, 2022, 292, 118254.                                                                                            | 7.5  | 5         |
| 3  | Influence of regional emission controls on the chemical composition, sources, and size distributions of submicron aerosols: Insights from the 2014 Nanjing Youth Olympic Games. Science of the Total Environment, 2022, 807, 150869.                                       | 8.0  | 10        |
| 4  | High-spatial-resolution distributions of aerosol chemical characteristics in urban Lanzhou, western<br>China, during wintertime: Insights from an on-road mobile aerosol mass spectrometry measurement<br>experiment. Science of the Total Environment, 2022, 819, 153069. | 8.0  | 3         |
| 5  | Aircraft Study of Secondary Aerosols in Longâ€Range Transported Air Masses From the North China<br>Plain by a Midâ€Latitude Cyclone. Journal of Geophysical Research D: Atmospheres, 2022, 127, .                                                                          | 3.3  | 4         |
| 6  | Persistent Influence of Wildfire Emissions in the Western United States and Characteristics of Aged<br>Biomass Burning Organic Aerosols under Clean Air Conditions. Environmental Science &<br>Technology, 2022, 56, 3645-3657.                                            | 10.0 | 13        |
| 7  | Novel Application of Machine Learning Techniques for Rapid Source Apportionment of Aerosol Mass<br>Spectrometer Datasets. ACS Earth and Space Chemistry, 2022, 6, 932-942.                                                                                                 | 2.7  | 6         |
| 8  | Aqueous <sup>·</sup> OH Oxidation of Highly Substituted Phenols as a Source of Secondary Organic<br>Aerosol. Environmental Science & Technology, 2022, 56, 9959-9967.                                                                                                      | 10.0 | 7         |
| 9  | New particle formation (NPF) events in China urban clusters given by sever composite pollution background. Chemosphere, 2021, 262, 127842.                                                                                                                                 | 8.2  | 13        |
| 10 | Effects of atmospheric aging processes on in vitro induced oxidative stress and chemical composition of biomass burning aerosols. Journal of Hazardous Materials, 2021, 401, 123750.                                                                                       | 12.4 | 27        |
| 11 | Differential inflammatory potential of particulate matter (PM) size fractions from imperial valley, CA.<br>Atmospheric Environment, 2021, 244, 117992.                                                                                                                     | 4.1  | 7         |
| 12 | Characteristics and sources of water-soluble organic aerosol in a heavily polluted environment in Northern China. Science of the Total Environment, 2021, 758, 143970.                                                                                                     | 8.0  | 18        |
| 13 | Aqueous production of secondary organic aerosol from fossil-fuel emissions in winter Beijing haze.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                                                        | 7.1  | 75        |
| 14 | Photosensitized Reactions of a Phenolic Carbonyl from Wood Combustion in the Aqueous<br>Phase—Chemical Evolution and Light Absorption Properties of AqSOA. Environmental Science &<br>Technology, 2021, 55, 5199-5211.                                                     | 10.0 | 36        |
| 15 | Kinetics and Mass Yields of Aqueous Secondary Organic Aerosol from Highly Substituted Phenols<br>Reacting with a Triplet Excited State. Environmental Science & Technology, 2021, 55, 5772-5781.                                                                           | 10.0 | 20        |
| 16 | Hydroxymethanesulfonate (HMS) Formation during Summertime Fog in an Arctic Oil Field.<br>Environmental Science and Technology Letters, 2021, 8, 511-518.                                                                                                                   | 8.7  | 9         |
| 17 | Molecular-Level Study of the Photo-Oxidation of Aqueous-Phase Guaiacyl Acetone in the Presence of <sup>3</sup> C*: Formation of Brown Carbon Products. ACS Earth and Space Chemistry, 2021, 5, 1983-1996.                                                                  | 2.7  | 15        |
| 18 | Deposition of ambient particles in the human respiratory system based on single particle analysis: A case study in the Pearl River Delta, China. Environmental Pollution, 2021, 283, 117056.                                                                               | 7.5  | 0         |

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Measurement report: Cloud condensation nuclei activity and its variation with organic oxidation<br>level and volatility observed during an aerosol life cycle intensive operational period (ALC-IOP).<br>Atmospheric Chemistry and Physics, 2021, 21, 13019-13029. | 4.9  | 3         |
| 20 | Comparative Assessment of Cooking Emission Contributions to Urban Organic Aerosol Using Online<br>Molecular Tracers and Aerosol Mass Spectrometry Measurements. Environmental Science &<br>Technology, 2021, 55, 14526-14535.                                      | 10.0 | 21        |
| 21 | Regional Differences in the Light Absorption Properties of Fine Particulate Matter Over the Tibetan<br>Plateau: Insights From HRâ€ToFâ€AMS and Aethalometer Measurements. Journal of Geophysical Research D:<br>Atmospheres, 2021, 126, .                          | 3.3  | 4         |
| 22 | Diesel Soot and Amine-Containing Organic Sulfate Aerosols in an Arctic Oil Field. Environmental<br>Science & Technology, 2020, 54, 92-101.                                                                                                                         | 10.0 | 7         |
| 23 | Evolution of Aerosol Under Moist and Fog Conditions in a Rural Forest Environment: Insights From<br>Highâ€Resolution Aerosol Mass Spectrometry. Geophysical Research Letters, 2020, 47, e2020GL089714.                                                             | 4.0  | 7         |
| 24 | Aerosol Total Volume Estimation From Wavelength―and Sizeâ€Resolved Scattering Coefficient Data: A<br>New Method. Earth and Space Science, 2020, 7, e2019EA000863.                                                                                                  | 2.6  | 1         |
| 25 | Chemical characterization and source identification of submicron aerosols from a year-long<br>real-time observation at a rural site of Shanghai using an Aerosol Chemical Speciation Monitor.<br>Atmospheric Research, 2020, 246, 105154.                          | 4.1  | 18        |
| 26 | Wildfire and prescribed burning impacts on air quality in the United States. Journal of the Air and Waste Management Association, 2020, 70, 961-970.                                                                                                               | 1.9  | 21        |
| 27 | Optical properties and molecular compositions of water-soluble and water-insoluble brown carbon<br>(BrC) aerosols in northwest China. Atmospheric Chemistry and Physics, 2020, 20, 4889-4904.                                                                      | 4.9  | 46        |
| 28 | A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements.<br>Environmental Sciences: Processes and Impacts, 2020, 22, 1616-1653.                                                                                                | 3.5  | 57        |
| 29 | Impact of air transport and secondary formation on haze pollution in the Yangtze River Delta: In situ<br>online observations in Shanghai and Nanjing. Atmospheric Environment, 2020, 225, 117350.                                                                  | 4.1  | 35        |
| 30 | Modeling air quality in the San Joaquin valley of California during the 2013 Discover-AQ field campaign. Atmospheric Environment: X, 2020, 5, 100067.                                                                                                              | 1.4  | 9         |
| 31 | Measurement report: Characterization of severe spring haze episodes and influences of long-range<br>transport in the Seoul metropolitan area in March 2019. Atmospheric Chemistry and Physics, 2020, 20,<br>11527-11550.                                           | 4.9  | 27        |
| 32 | Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US. Atmospheric Chemistry and Physics, 2020, 20, 13319-13341.                                                                                               | 4.9  | 44        |
| 33 | Characterization of submicron organic particles in Beijing during summertime: comparison between SP-AMS and HR-AMS. Atmospheric Chemistry and Physics, 2020, 20, 14091-14102.                                                                                      | 4.9  | 19        |
| 34 | New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and<br>Sinks Govern Atmospheric SOA Distributions and Radiative Forcing. Journal of Advances in Modeling<br>Earth Systems, 2020, 12, e2020MS002266.                     | 3.8  | 15        |
| 35 | Influences of Primary Emission and Secondary Coating Formation on the Particle Diversity and Mixing State of Black Carbon Particles. Environmental Science & amp; Technology, 2019, 53, 9429-9438.                                                                 | 10.0 | 15        |
| 36 | Chemical characterization and sources of submicron aerosols in the northeastern Qinghai–Tibet<br>Plateau: insights from high-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2019,<br>19, 7897-7911.                                              | 4.9  | 21        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Light Absorption by Ambient Black and Brown Carbon and its Dependence on Black Carbon Coating<br>State for Two California, USA, Cities in Winter and Summer. Journal of Geophysical Research D:<br>Atmospheres, 2019, 124, 1550-1577.                     | 3.3  | 99        |
| 38 | Molecular characteristics and diurnal variations of organic aerosols at a rural site in the North<br>China Plain with implications for the influence of regional biomass burning. Atmospheric Chemistry<br>and Physics, 2019, 19, 10481-10496.            | 4.9  | 36        |
| 39 | Biogenic and anthropogenic sources of aerosols at the High Arctic site Villum Research Station.<br>Atmospheric Chemistry and Physics, 2019, 19, 10239-10256.                                                                                              | 4.9  | 25        |
| 40 | Summertime aerosol volatility measurements in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10205-10216.                                                                                                                                   | 4.9  | 45        |
| 41 | Temporal characteristics and vertical distribution of atmospheric ammonia and ammonium in winter in Beijing. Science of the Total Environment, 2019, 681, 226-234.                                                                                        | 8.0  | 29        |
| 42 | Light absorption enhancement of black carbon in urban Beijing in summer. Atmospheric Environment,<br>2019, 213, 499-504.                                                                                                                                  | 4.1  | 49        |
| 43 | Free tropospheric aerosols at the Mt.ÂBachelor Observatory: more oxidized and higher sulfate<br>content compared to boundary layer aerosols. Atmospheric Chemistry and Physics, 2019, 19, 1571-1585.                                                      | 4.9  | 25        |
| 44 | Photooxidants from brown carbon and other chromophores in illuminated particle extracts.<br>Atmospheric Chemistry and Physics, 2019, 19, 6579-6594.                                                                                                       | 4.9  | 47        |
| 45 | Chemistry of new particle growth during springtime in the Seoul metropolitan area, Korea.<br>Chemosphere, 2019, 225, 713-722.                                                                                                                             | 8.2  | 13        |
| 46 | Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol.<br>Aerosol Science and Technology, 2019, 53, 663-674.                                                                                                     | 3.1  | 55        |
| 47 | Nitrite-Mediated Photooxidation of Vanillin in the Atmospheric Aqueous Phase. Environmental<br>Science & Technology, 2019, 53, 14253-14263.                                                                                                               | 10.0 | 55        |
| 48 | Comparing black and brown carbon absorption from AERONET and surface measurements at wintertime Fresno. Atmospheric Environment, 2019, 199, 164-176.                                                                                                      | 4.1  | 20        |
| 49 | Chemical processing of water-soluble species and formation of secondary organic aerosol in fogs.<br>Atmospheric Environment, 2019, 200, 158-166.                                                                                                          | 4.1  | 66        |
| 50 | Photochemical Aging of Guaiacol by Fe(III)–Oxalate Complexes in Atmospheric Aqueous Phase.<br>Environmental Science & Technology, 2019, 53, 127-136.                                                                                                      | 10.0 | 50        |
| 51 | Influence of Emissions and Aqueous Processing on Particles Containing Black Carbon in a Polluted<br>Urban Environment: Insights From a Soot Particleâ€Aerosol Mass Spectrometer. Journal of Geophysical<br>Research D: Atmospheres, 2018, 123, 6648-6666. | 3.3  | 41        |
| 52 | Chemical characterization of long-range transport biomass burning emissions to the Himalayas:<br>insights from high-resolution aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018,<br>18, 4617-4638.                                      | 4.9  | 29        |
| 53 | Insights into the formation of secondary organic carbon in the summertime in urban Shanghai.<br>Journal of Environmental Sciences, 2018, 72, 118-132.                                                                                                     | 6.1  | 27        |
| 54 | Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 427-443.                                                                            | 4.9  | 42        |

| #  | Article                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010. Atmospheric Chemistry and Physics, 2018, 18, 5499-5514.                                                                                                                | 4.9  | 5         |
| 56 | Understanding Composition, Formation, and Aging of Organic Aerosols in Wildfire Emissions via Combined Mountain Top and Airborne Measurements. ACS Symposium Series, 2018, , 363-385.                                                                                                              | 0.5  | 10        |
| 57 | Two years of online measurement of fine particulate nitrate in the western Yangtze River Delta:<br>influences of thermodynamics and<br>N <sub>2</sub> 0 <sub>5</sub> hydrolysis.<br>Atmospheric Chemistry and Physics, 2018, 18, 17177-17190.                                                      | 4.9  | 46        |
| 58 | Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry<br>and properties in the Seoul Metropolitan Area during spring time: results from KORUS-AQ.<br>Atmospheric Chemistry and Physics, 2018, 18, 7149-7168.                                              | 4.9  | 105       |
| 59 | Larger Submicron Particles for Emissions With Residential Burning in Wintertime San Joaquin Valley<br>(Fresno) than for Vehicle Combustion in Summertime South Coast Air Basin (Fontana). Journal of<br>Geophysical Research D: Atmospheres, 2018, 123, 10,526.                                    | 3.3  | 10        |
| 60 | Organic Aerosol Particle Chemical Properties Associated With Residential Burning and Fog in<br>Wintertime San Joaquin Valley (Fresno) and With Vehicle and Firework Emissions in Summertime<br>South Coast Air Basin (Fontana). Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,707. | 3.3  | 22        |
| 61 | Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an<br>aerosol chemical speciation monitor in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18,<br>8469-8489.                                                                                   | 4.9  | 110       |
| 62 | Formation and Evolution of aqSOA from Aqueous-Phase Reactions of Phenolic Carbonyls: Comparison<br>between Ammonium Sulfate and Ammonium Nitrate Solutions. Environmental Science &<br>Technology, 2018, 52, 9215-9224.                                                                            | 10.0 | 68        |
| 63 | Modeling NH 4 NO 3 Over the San Joaquin Valley During the 2013 DISCOVERâ€AQ Campaign. Journal of<br>Geophysical Research D: Atmospheres, 2018, 123, 4727-4745.                                                                                                                                     | 3.3  | 18        |
| 64 | Wintertime waterâ€soluble aerosol composition and particle water content in Fresno, California.<br>Journal of Geophysical Research D: Atmospheres, 2017, 122, 3155-3170.                                                                                                                           | 3.3  | 39        |
| 65 | Real-time chemical characterization of atmospheric particulate matter in China: A review. Atmospheric<br>Environment, 2017, 158, 270-304.                                                                                                                                                          | 4.1  | 203       |
| 66 | Source apportionment of PM2.5 across China using LOTOS-EUROS. Atmospheric Environment, 2017, 164, 370-386.                                                                                                                                                                                         | 4.1  | 79        |
| 67 | Differential pulmonary effects of wintertime California and China particulate matter in healthy young mice. Toxicology Letters, 2017, 278, 1-8.                                                                                                                                                    | 0.8  | 35        |
| 68 | Light absorption by water-soluble organic carbon in atmospheric fine particles in the central Tibetan<br>Plateau. Environmental Science and Pollution Research, 2017, 24, 21386-21397.                                                                                                             | 5.3  | 28        |
| 69 | First Chemical Characterization of Refractory Black Carbon Aerosols and Associated Coatings over the Tibetan Plateau (4730 m a.s.l). Environmental Science & Technology, 2017, 51, 14072-14082.                                                                                                    | 10.0 | 55        |
| 70 | Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime<br>surface particulate nitrateÂconcentrations. Atmospheric Chemistry and Physics, 2017, 17, 14747-14770.                                                                                         | 4.9  | 45        |
| 71 | Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time<br>measurements using aAhigh-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics,<br>2017, 17, 2009-2033.                                                                       | 4.9  | 50        |
| 72 | Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China<br>Plain: significant contribution fromÂcoal and biomass combustion. Atmospheric Chemistry and Physics,<br>2017, 17, 4751-4768.                                                                   | 4.9  | 172       |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning. Atmospheric Chemistry and Physics, 2017, 17, 11107-11133.                                                          | 4.9  | 109       |
| 74 | Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions.<br>Atmospheric Chemistry and Physics, 2017, 17, 15055-15067.                                                                      | 4.9  | 30        |
| 75 | Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2477-2493.                               | 4.9  | 107       |
| 76 | Size-resolved chemical composition, effective density, and optical properties of biomass burning particles. Atmospheric Chemistry and Physics, 2017, 17, 7481-7493.                                                                  | 4.9  | 36        |
| 77 | Evolution of Multispectral Aerosol Absorption Properties in a Biogenically-Influenced Urban<br>Environment during the CARES Campaign. Atmosphere, 2017, 8, 217.                                                                      | 2.3  | 8         |
| 78 | Performance of Two Bioswales on Urban Runoff Management. Infrastructures, 2017, 2, 12.                                                                                                                                               | 2.8  | 12        |
| 79 | Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.                                                                                       | 23.0 | 548       |
| 80 | Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer. Atmospheric Chemistry and Physics, 2016, 16, 14937-14957.                                            | 4.9  | 83        |
| 81 | Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign. Environmental Science & amp; Technology, 2016, 50, 8613-8622.                                               | 10.0 | 89        |
| 82 | "APEC Blue― Secondary Aerosol Reductions from Emission Controls in Beijing. Scientific Reports,<br>2016, 6, 20668.                                                                                                                   | 3.3  | 155       |
| 83 | Influences of upwind emission sources and atmospheric processing on aerosol chemistry and properties at a rural location in the Northeastern U.S Journal of Geophysical Research D: Atmospheres, 2016, 121, 6049-6065.               | 3.3  | 35        |
| 84 | Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer:<br>observations at a rural site in eastern Yangtze River Delta of China. Science of the Total Environment,<br>2016, 571, 1454-1466. | 8.0  | 109       |
| 85 | Sensitivity analysis of simulated SOA loadings using a varianceâ€based statistical approach. Journal of<br>Advances in Modeling Earth Systems, 2016, 8, 499-519.                                                                     | 3.8  | 10        |
| 86 | Hygrosopicity measurements of aerosol particles in the San Joaquin Valley, CA, Baltimore, MD, and<br>Golden, CO. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7344-7359.                                               | 3.3  | 9         |
| 87 | Primary and secondary aerosols in Beijing in winter: sources, variations and processes. Atmospheric<br>Chemistry and Physics, 2016, 16, 8309-8329.                                                                                   | 4.9  | 288       |
| 88 | What do correlations tell us about anthropogenic–biogenic interactions and SOA formation in the Sacramento plume during CARES?. Atmospheric Chemistry and Physics, 2016, 16, 1729-1746.                                              | 4.9  | 6         |
| 89 | A global simulation of brown carbon: implications for photochemistry and direct radiative effect.<br>Atmospheric Chemistry and Physics, 2016, 16, 3413-3432.                                                                         | 4.9  | 165       |
| 90 | Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase:<br>competition among oligomerization, functionalization, and fragmentation. Atmospheric Chemistry<br>and Physics, 2016, 16, 4511-4527.    | 4.9  | 92        |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol.<br>Atmospheric Chemistry and Physics, 2016, 16, 2575-2596.                                                                           | 4.9  | 53        |
| 92  | Influences of emission sources and meteorology on aerosol chemistry in a polluted urban<br>environment: results from DISCOVER-AQ California. Atmospheric Chemistry and Physics, 2016, 16,<br>5427-5451.                            | 4.9  | 80        |
| 93  | Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARESÂ2010 field study in northern California. Atmospheric Chemistry and Physics, 2016, 16, 6511-6535.                   | 4.9  | 70        |
| 94  | Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China:<br>insights from soot particle aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16,<br>9109-9127.           | 4.9  | 96        |
| 95  | Comment on "The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometer― Aerosol Science and Technology, 2016, 50, i-xv.                                        | 3.1  | 39        |
| 96  | Liquid Water: Ubiquitous Contributor to Aerosol Mass. Environmental Science and Technology<br>Letters, 2016, 3, 257-263.                                                                                                           | 8.7  | 121       |
| 97  | Optical Properties of Wintertime Aerosols from Residential Wood Burning in Fresno, CA: Results from DISCOVER-AQ 2013. Environmental Science & amp; Technology, 2016, 50, 1681-1690.                                                | 10.0 | 54        |
| 98  | Observation of Fullerene Soot in Eastern China. Environmental Science and Technology Letters, 2016,<br>3, 121-126.                                                                                                                 | 8.7  | 67        |
| 99  | Particulate Matter, Ozone, and Nitrogen Species in Aged Wildfire Plumes Observed at the Mount<br>Bachelor Observatory. Aerosol and Air Quality Research, 2016, 16, 3075-3087.                                                      | 2.1  | 46        |
| 100 | Clobal transformation and fate of SOA: Implications of lowâ€volatility SOA and gasâ€phase fragmentation reactions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4169-4195.                                           | 3.3  | 123       |
| 101 | Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9591-9605.                                                   | 3.3  | 49        |
| 102 | Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chemistry and Physics, 2015, 15, 2969-2983.                                               | 4.9  | 843       |
| 103 | Aerosol optical hygroscopicity measurements during the 2010 CARES campaign. Atmospheric Chemistry and Physics, 2015, 15, 4045-4061.                                                                                                | 4.9  | 24        |
| 104 | Modeling particle nucleation and growth over northern California during the 2010 CARES campaign.<br>Atmospheric Chemistry and Physics, 2015, 15, 12283-12313.                                                                      | 4.9  | 25        |
| 105 | Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit. Atmospheric Chemistry and Physics, 2015, 15, 12879-12895.                                         | 4.9  | 100       |
| 106 | Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal<br>variations, meteorological effects, and source analysis. Atmospheric Chemistry and Physics, 2015, 15,<br>10149-10165.              | 4.9  | 324       |
| 107 | Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic<br>aerosol formation during the January 2013 haze episode in North China. Atmospheric Chemistry and<br>Physics, 2015, 15, 2031-2049. | 4.9  | 481       |
| 108 | Elemental composition of organic aerosol: The gap between ambient and laboratory measurements.<br>Geophysical Research Letters, 2015, 42, 4182-4189.                                                                               | 4.0  | 84        |

| #   | Article                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Organic PM Emissions from Vehicles: Composition, O/C Ratio, and Dependence on PM Concentration.<br>Aerosol Science and Technology, 2015, 49, 86-97.                                                                                                                                                      | 3.1  | 44        |
| 110 | Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM). Atmospheric Environment, 2015, 106, 43-55.                                                                                                             | 4.1  | 92        |
| 111 | Volatility of Primary Organic Aerosol Emitted from Light Duty Gasoline Vehicles. Environmental<br>Science & Technology, 2015, 49, 1569-1577.                                                                                                                                                             | 10.0 | 21        |
| 112 | Chemical composition and size distribution of summertime<br>PM <sub>2.5</sub> at a high altitude remote location in the northeast of<br>the Qinghai–Xizang (Tibet) Plateau: insights into aerosol sources and processing in free troposphere.<br>Atmospheric Chemistry and Physics, 2015, 15, 5069-5081. | 4.9  | 77        |
| 113 | Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing:<br>Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.<br>Environmental Science & Technology, 2015, 49, 11340-11347.                                              | 10.0 | 124       |
| 114 | FT-IR quantification of the carbonyl functional group in aqueous-phase secondary organic aerosol from phenols. Atmospheric Environment, 2015, 100, 230-237.                                                                                                                                              | 4.1  | 45        |
| 115 | Measurement of atmospheric amines and ammonia using the high resolution time-of-flight chemical ionization mass spectrometry. Atmospheric Environment, 2015, 102, 249-259.                                                                                                                               | 4.1  | 130       |
| 116 | Toward Understanding Amines and Their Degradation Products from Postcombustion<br>CO <sub>2</sub> Capture Processes with Aerosol Mass Spectrometry. Environmental Science &<br>Technology, 2014, 48, 5066-5075.                                                                                          | 10.0 | 52        |
| 117 | Secondary Organic Aerosol Production from Aqueous Reactions of Atmospheric Phenols with an<br>Organic Triplet Excited State. Environmental Science & Technology, 2014, 48, 1049-1057.                                                                                                                    | 10.0 | 130       |
| 118 | Spatially and seasonally resolved estimate of the ratio of organic mass to organic carbon.<br>Atmospheric Environment, 2014, 87, 34-40.                                                                                                                                                                  | 4.1  | 76        |
| 119 | A yearlong study of water-soluble organic carbon in Beijing I: Sources and its primary vs. secondary nature. Atmospheric Environment, 2014, 92, 514-521.                                                                                                                                                 | 4.1  | 122       |
| 120 | Hygroscopic growth of submicron and supermicron aerosols in the marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8384-8399.                                                                                                                                             | 3.3  | 35        |
| 121 | The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 2014, 14, 10845-10895.                                                                                                                                                                | 4.9  | 363       |
| 122 | Chemical composition, sources, and processes of urban aerosols during summertime in northwest<br>China: insights from high-resolution aerosol mass spectrometry. Atmospheric Chemistry and Physics,<br>2014, 14, 12593-12611.                                                                            | 4.9  | 132       |
| 123 | Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical. Atmospheric Chemistry and Physics, 2014, 14, 13801-13816.                                                                                               | 4.9  | 187       |
| 124 | Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns. Atmospheric Chemistry and Physics, 2014, 14, 10013-10060.                                                              | 4.9  | 62        |
| 125 | Variations of cloud condensation nuclei (CCN) and aerosol activity during fog–haze episode: a case study from Shanghai. Atmospheric Chemistry and Physics, 2014, 14, 12499-12512.                                                                                                                        | 4.9  | 38        |
| 126 | Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model.<br>Atmospheric Chemistry and Physics, 2014, 14, 6213-6239.                                                                                                                                               | 4.9  | 166       |

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Chemistry of new particle growth in mixed urban and biogenic emissions – insights from CARES.<br>Atmospheric Chemistry and Physics, 2014, 14, 6477-6494.                                                                                      | 4.9  | 52        |
| 128 | The 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and policy implications. Atmospheric Chemistry and Physics, 2014, 14, 3151-3173.                                                                     | 4.9  | 319       |
| 129 | Novel Pathways to Form Secondary Organic Aerosols: Glyoxal SOA in WRF/Chem. Springer<br>Proceedings in Complexity, 2014, , 149-154.                                                                                                           | 0.3  | 0         |
| 130 | Aerosol Transport and Source Attribution Using Sunphotometers, Models and In-Situ Chemical<br>Composition Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 3803-3811.                                              | 6.3  | 6         |
| 131 | Dissolved Organic Matter and Inorganic Ions in a Central Himalayan Glacier—Insights into Chemical<br>Composition and Atmospheric Sources. Environmental Science & Technology, 2013, 47, 6181-6188.                                            | 10.0 | 55        |
| 132 | Gas-Phase CO <sub>2</sub> Subtraction for Improved Measurements of the Organic Aerosol Mass<br>Concentration and Oxidation Degree by an Aerosol Mass Spectrometer. Environmental Science &<br>Technology, 2013, 47, 14324-14331.              | 10.0 | 30        |
| 133 | Real-Time Black Carbon Emission Factor Measurements from Light Duty Vehicles. Environmental<br>Science & Technology, 2013, 47, 13104-13112.                                                                                                   | 10.0 | 36        |
| 134 | Sources, Composition and Absorption Ångström Exponent of Light-absorbing Organic Components in<br>Aerosol Extracts from the Los Angeles Basin. Environmental Science & Technology, 2013, 47,<br>3685-3693.                                    | 10.0 | 344       |
| 135 | Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur<br>dioxide, nitrogen oxides, and ammonia. Atmospheric Chemistry and Physics, 2013, 13, 2635-2652.                                              | 4.9  | 313       |
| 136 | Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign. Atmospheric Chemistry and Physics, 2013, 13, 2091-2113.                                                                                     | 4.9  | 146       |
| 137 | CCN activity of organic aerosols observed downwind of urban emissions during CARES. Atmospheric Chemistry and Physics, 2013, 13, 12155-12169.                                                                                                 | 4.9  | 88        |
| 138 | Three-dimensional factorization of size-resolved organic aerosol mass spectra from Mexico City.<br>Atmospheric Measurement Techniques, 2012, 5, 195-224.                                                                                      | 3.1  | 39        |
| 139 | Pollution Gradients and Chemical Characterization ofÂParticulateÂMatter from Vehicular Traffic near<br>Major Roadways: Results from the 2009 Queens College Air Quality Study in NYC. Aerosol Science and<br>Technology, 2012, 46, 1201-1218. | 3.1  | 102       |
| 140 | Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES. Atmospheric Chemistry and Physics, 2012, 12, 8131-8156.                 | 4.9  | 146       |
| 141 | Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2012, 12, 8537-8551.                                                   | 4.9  | 112       |
| 142 | Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2012, 12, 2215-2227.                                                                | 4.9  | 55        |
| 143 | Impact of aerosol composition on cloud condensation nuclei activity. Atmospheric Chemistry and Physics, 2012, 12, 3783-3790.                                                                                                                  | 4.9  | 40        |
| 144 | Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES). Atmospheric Chemistry and Physics, 2012, 12, 7647-7687.                                                                                                       | 4.9  | 94        |

| #   | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution. Atmospheric Chemistry and Physics, 2012, 12, 2725-2746.                                                                             | 4.9  | 137       |
| 146 | Effect of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime. Environmental Chemistry, 2012, 9, 221.                                                                                       | 1.5  | 159       |
| 147 | Summertime formaldehyde observations in New York City: Ambient levels, sources and its contribution to HOx radicals. Journal of Geophysical Research, 2012, 117, .                                                                                    | 3.3  | 44        |
| 148 | Determination of and evidence for non oreâ€shell structure of particles containing black carbon<br>using the Singleâ€Particle Soot Photometer (SP2). Geophysical Research Letters, 2012, 39, .                                                        | 4.0  | 87        |
| 149 | Primary and secondary organic aerosols in Fresno, California during wintertime: Results from high resolution aerosol mass spectrometry. Journal of Geophysical Research, 2012, 117, .                                                                 | 3.3  | 133       |
| 150 | Characterization and Source Apportionment of Water-Soluble Organic Matter in Atmospheric Fine<br>Particles (PM <sub>2.5</sub> ) with High-Resolution Aerosol Mass Spectrometry and GC–MS.<br>Environmental Science & Technology, 2011, 45, 4854-4861. | 10.0 | 114       |
| 151 | Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass<br>Spectrometer Data. Environmental Science & Technology, 2011, 45, 910-916.                                                                                 | 10.0 | 336       |
| 152 | Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic<br>aerosol. Geophysical Research Letters, 2011, 38, n/a-n/a.                                                                                      | 4.0  | 190       |
| 153 | Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmospheric<br>Chemistry and Physics, 2011, 11, 12109-12136.                                                                                                     | 4.9  | 421       |
| 154 | Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010.<br>Atmospheric Chemistry and Physics, 2011, 11, 9839-9864.                                                                                                   | 4.9  | 668       |
| 155 | A case study of aerosol processing and evolution in summer in New York City. Atmospheric Chemistry and Physics, 2011, 11, 12737-12750.                                                                                                                | 4.9  | 49        |
| 156 | Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer. Atmospheric Chemistry and Physics, 2011, 11, 1581-1602.                             | 4.9  | 378       |
| 157 | Analysis of the formation of fog and haze in North China Plain (NCP). Atmospheric Chemistry and Physics, 2011, 11, 8205-8214.                                                                                                                         | 4.9  | 206       |
| 158 | Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a<br>review. Analytical and Bioanalytical Chemistry, 2011, 401, 3045-3067.                                                                               | 3.7  | 764       |
| 159 | An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass<br>Concentrations of Ambient Aerosol. Aerosol Science and Technology, 2011, 45, 780-794.                                                             | 3.1  | 675       |
| 160 | Highly time-resolved chemical characterization of atmospheric submicron particles during 2008<br>Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmospheric<br>Chemistry and Physics, 2010, 10, 8933-8945.        | 4.9  | 322       |
| 161 | Impacts of transported background ozone on California air quality during the ARCTAS-CARB period – a multi-scale modeling study. Atmospheric Chemistry and Physics, 2010, 10, 6947-6968.                                                               | 4.9  | 63        |
| 162 | A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign. Atmospheric Chemistry and Physics, 2010, 10, 2091-2115.                                                         | 4.9  | 43        |

| #   | Article                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations. Atmospheric Chemistry and Physics, 2010, 10, 4795-4807.        | 4.9  | 124       |
| 164 | Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4809-4822.   | 4.9  | 205       |
| 165 | Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer. Atmospheric Environment, 2010, 44, 131-140.                     | 4.1  | 242       |
| 166 | Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass<br>Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641.                                        | 4.9  | 908       |
| 167 | Characterization of aerosol associated with enhanced small particle number concentrations in a suburban forested environment. Journal of Geophysical Research, 2010, 115, .                            | 3.3  | 7         |
| 168 | Aerosol Mass Spectrometric Features of Biogenic SOA: Observations from a Plant Chamber and in Rural Atmospheric Environments. Environmental Science & Technology, 2009, 43, 8166-8172.                 | 10.0 | 75        |
| 169 | Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.                                                                                                                        | 12.6 | 3,374     |
| 170 | Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City.<br>Atmospheric Chemistry and Physics, 2009, 9, 5681-5709.                                            | 4.9  | 261       |
| 171 | Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 2009, 9, 2891-2918.                                     | 4.9  | 1,276     |
| 172 | Size-resolved aerosol chemistry on Whistler Mountain, Canada with a high-resolution aerosol mass spectrometer during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 3095-3111.                   | 4.9  | 119       |
| 173 | Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 2009, 9, 5131-5153.                                                                                           | 4.9  | 1,982     |
| 174 | Submicron particles at Thompson Farm during ICARTT measured using aerosol mass spectrometry.<br>Journal of Geophysical Research, 2008, 113, .                                                          | 3.3  | 35        |
| 175 | O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution<br>Time-of-Flight Aerosol Mass Spectrometry. Environmental Science & Technology, 2008, 42,<br>4478-4485. | 10.0 | 1,524     |
| 176 | Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyâ€influenced<br>Northern Hemisphere midlatitudes. Geophysical Research Letters, 2007, 34, .                       | 4.0  | 1,773     |
| 177 | A Case Study of Urban Particle Acidity and Its Influence on Secondary Organic Aerosol. Environmental<br>Science & Technology, 2007, 41, 3213-3219.                                                     | 10.0 | 341       |
| 178 | Oxygenated and water-soluble organic aerosols in Tokyo. Journal of Geophysical Research, 2007, 112, .                                                                                                  | 3.3  | 256       |
| 179 | Interference of organic signals in highly time resolved nitrate measurements by low mass resolution aerosol mass spectrometry. Journal of Geophysical Research, 2007, 112, .                           | 3.3  | 35        |
| 180 | Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 2007, 26, 185-222.                                             | 5.4  | 1,708     |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer. International Journal of Mass Spectrometry, 2007, 263, 152-170.                                                 | 1.5  | 167       |
| 182 | Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophysical Research Letters, 2006, 33, .                                                                                 | 4.0  | 1,027     |
| 183 | Seasonal and diurnal variations of submicron organic aerosol in Tokyo observed using the Aerodyne aerosol mass spectrometer. Journal of Geophysical Research, 2006, 111, .                                                      | 3.3  | 149       |
| 184 | The characterisation of pollution aerosol in a changing photochemical environment. Atmospheric Chemistry and Physics, 2006, 6, 5573-5588.                                                                                       | 4.9  | 55        |
| 185 | Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol<br>Mass Spectrometry: results from the CENICA Supersite. Atmospheric Chemistry and Physics, 2006, 6,<br>925-946.                 | 4.9  | 341       |
| 186 | Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmospheric Chemistry and Physics, 2005, 5, 3289-3311.                                                 | 4.9  | 572       |
| 187 | Deconvolution and Quantification of Hydrocarbon-like and Oxygenated Organic Aerosols Based on Aerosol Mass Spectrometry. Environmental Science & amp; Technology, 2005, 39, 4938-4952.                                          | 10.0 | 617       |
| 188 | Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. Journal of Geophysical Research, 2005, 110, .                                                | 3.3  | 229       |
| 189 | Insights into the Chemistry of New Particle Formation and Growth Events in Pittsburgh Based on<br>Aerosol Mass Spectrometry. Environmental Science & Technology, 2004, 38, 4797-4809.                                           | 10.0 | 259       |
| 190 | Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California. Atmospheric Environment, 2003, 37, 2247-2258.                                                                  | 4.1  | 218       |
| 191 | Conversion of Fogwater and Aerosol Organic Nitrogen to Ammonium, Nitrate, and NOxduring<br>Exposure to Simulated Sunlight and Ozone. Environmental Science & Technology, 2003, 37,<br>3522-3530.                                | 10.0 | 55        |
| 192 | Aircraft Measurements of Nitrogen and Phosphorus in and around the Lake Tahoe Basin:  Implications<br>for Possible Sources of Atmospheric Pollutants to Lake Tahoe. Environmental Science &<br>Technology, 2002, 36, 4981-4989. | 10.0 | 39        |
| 193 | Water-soluble organic nitrogen in atmospheric fine particles (PM2.5) from northern California.<br>Journal of Geophysical Research, 2002, 107, AAC 3-1-AAC 3-9.                                                                  | 3.3  | 128       |
| 194 | Chemistry of fog waters in California's Central Valley—Part 3: concentrations and speciation of organic and inorganic nitrogen. Atmospheric Environment, 2001, 35, 5629-5643.                                                   | 4.1  | 131       |