
Kazuyuki Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2609875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dielectric and piezoelectric properties of highly (100)-oriented BaTiO3 thin film grown on a Pt/TiOx/SiO2/Si substrate using LaNiO3 as a buffer layer. Journal of Crystal Growth, 2005, 284, 190-196.	1.5	84
2	Ferroelectric properties of alkoxy-derived CaBi4Ti4O15 thin films on Pt-passivated Si. Applied Physics Letters, 2001, 78, 1119-1121.	3.3	71
3	Preparation of submicron-sized Sm2Fe17N3 fine powder with high coercivity by reduction-diffusion process. Journal of Alloys and Compounds, 2017, 695, 1617-1623.	5.5	68
4	Ferro- and piezoelectric properties of polar-axis-oriented CaBi4Ti4O15 films. Applied Physics Letters, 2004, 84, 3771-3773.	3.3	46
5	Microstructure Control and Dielectric/Piezoelectric Properties of Alkoxy-Derived Ba(Ti,Zr)O3Thin Films. Japanese Journal of Applied Physics, 2005, 44, 6885-6890.	1.5	45
6	Grain Size Effect on Dielectric and Piezoelectric Properties of Alkoxy-Derived BaTiO3-Based Thin Films. Japanese Journal of Applied Physics, 2004, 43, 6525-6529.	1.5	42
7	Dynamics of nanoscale polarization backswitching in tetragonal lead zirconate titanate thin film. Applied Physics Letters, 2003, 82, 2130-2132.	3.3	38
8	Preparation of nanoporous TiO2 film with large surface area using aqueous sol with trehalose. Materials Letters, 2004, 58, 2751-2753.	2.6	38
9	Platinum-assisted phase transition in bismuth-based layer-structured ferroelectric CaBi4Ti4O15 thin films. Applied Physics Letters, 2002, 81, 3227-3229.	3.3	31
10	Processing of Oriented K(Ta,Nb)O ₃ Films Using Chemical Solution Deposition. Journal of the American Ceramic Society, 1999, 82, 1463-1466.	3.8	31
11	Preparation of thick TiO2film with large surface area using aqueous sol with poly(ethylene glycol). Journal of Materials Science, 2004, 39, 699-701.	3.7	30
12	Electrical properties of (100)-predominant BaTiO3 films derived from alkoxide solutions of two concentrations. Acta Materialia, 2006, 54, 3893-3898.	7.9	29
13	Sol–Gel Synthesis of Highâ€ <i>k</i> HfO ₂ Thin Films. Journal of the American Ceramic Society, 2009, 92, S162.	3.8	23
14	Ferroelectric properties of alkoxy-derived CaBi2Ta2O9 thin films. Journal of Applied Physics, 2000, 88, 3779-3780.	2.5	22
15	Comparison of Microstructure and Ferroelectric Properties of Alkoxy-Derived MBi4Ti4O15(M: Ca or) Tj ETQq1	1 0.784314 1.5	rgBT /Overlo
16	Cold welding behavior of fine bare aluminum powders prepared by new low oxygen induction thermal plasma system. Journal of Alloys and Compounds, 2018, 768, 608-612.	5.5	21
17	Preparation of (Y,Yb)MnO3/Y2O3/Si (MFIS) Structure by Chemical Solution Deposition Method. Japanese Journal of Applied Physics, 2003, 42, 6007-6010.	1.5	19
18	Impact of oxygen ambient on ferroelectric properties of polar-axis-oriented CaBi4Ti4O15 films. Applied Physics Letters, 2005, 86, 112901.	3.3	19

#	Article	IF	CITATIONS
19	High piezoelectric response in polar-axis-oriented CaBi4Ti4O15 ferroelectric thin films. Applied Physics Letters, 2004, 85, 3519-3521.	3.3	18
20	Ferroelectric Property of Alkoxy-Derived YMnO3Films Crystallized in Argon. Japanese Journal of Applied Physics, 2003, 42, 5692-5695.	1.5	17
21	Control of crystallization and crystal orientation of alkoxy-derived SrBi ₂ Ta ₂ O ₉ thin films by ultraviolet irradiation. Journal of Materials Research, 2003, 18, 899-907.	2.6	17
22	Thickness Dependence of Electrical Properties of Highly (100)-Oriented BaTiO3Thin Films Prepared by One-Step Chemical Solution Deposition. Japanese Journal of Applied Physics, 2006, 45, 855-859.	1.5	17
23	Manipulation of Particles in a Microchannel with Various Geometric Spaces Using Ultrasound. Japanese Journal of Applied Physics, 2011, 50, 07HE27.	1.5	17
24	Chemical Approach Using Tailored Liquid Sources for Traditional and Novel Ferroelectric Thin Films. Japanese Journal of Applied Physics, 2002, 41, 6829-6835.	1.5	16
25	Piezoelectric Properties of CaBi4Ti4O15Ferroelectric Thin Films Investigated by Atomic Force Microscopy. Japanese Journal of Applied Physics, 2003, 42, 5994-5997.	1.5	16
26	Phase transition in bottom-up BaTiO3 films on Si. Applied Physics Letters, 2007, 91, 172907.	3.3	16
27	Investigation of Domain Switching and Retention in Oriented PbZr0.3Ti0.7O3Thin Film by Scanning Force Microscopy. Japanese Journal of Applied Physics, 2002, 41, 6724-6729.	1.5	15
28	Local Piezoelectric Response in Bismuth-Based Ferroelectric Thin Films Investigated by Scanning Force Microscopy. Japanese Journal of Applied Physics, 2002, 41, L1103-L1105.	1.5	15
29	Novel chemical processing for crystallization of SrBi2Ta2O9 thin films via UV irradiation. Materials Letters, 2002, 52, 20-23.	2.6	15
30	Effect of built-in bias fields on the nanoscale switching in ferroelectric thin films. Applied Physics A: Materials Science and Processing, 2005, 80, 1067-1070.	2.3	14
31	Fabrication of BaTiO3Thin Films Using Modified Chemical Solutions and Sintering Method. Japanese Journal of Applied Physics, 2008, 47, 7480-7485.	1.5	13
32	Characterization of high-k HfO2 films prepared using chemically modified alkoxy-derived solutions. Journal of Applied Physics, 2009, 105, 061631.	2.5	13
33	Influences of microstructure on macroscopic crystallinity and magnetic properties of Sm-Fe-N fine powder produced by jet-milling. Journal of Alloys and Compounds, 2021, 869, 159288.	5.5	13
34	Preparation and orientation control of RMnO3 (R=Y, Yb) thin film by chemical solution deposition. Journal of Crystal Growth, 2002, 237-239, 482-486.	1.5	12
35	Preparation of Layer-Structured CaBi2Ta2O9Ferroelectric Thin Films through a Triple Alkoxide Route. Japanese Journal of Applied Physics, 2000, 39, 5501-5504.	1.5	11
36	Ferroelectric properties of alkoxy-derived lanthanum-modified bismuth titanate thin films. Integrated Ferroelectrics, 2001, 36, 173-181.	0.7	10

Казичикі Suzuki

#	Article	IF	CITATIONS
37	Synthesis of Ferroelectric YMnO ₃ Thin Film by Chemical Solution Deposition. Key Engineering Materials, 2002, 214-215, 151-156.	0.4	10
38	Effects of Annealing Conditions on Crystallization of Hexagonal Manganite Films. Ferroelectrics, 2002, 270, 99-104.	0.6	10
39	Improvement of magnetization of submicron-sized high coercivity Sm2Fe17N3 powder by using hydrothermally synthesized sintering-tolerant cubic hematite. AIP Advances, 2017, 7, 056219.	1.3	10
40	Ferroelectric Properties of (Y,Yb)MnO ₃ Thin Films Prepared Using Alkoxide Solutions. Key Engineering Materials, 2003, 248, 77-82.	0.4	9
41	Fabrication and Characterization of Ba(Ti,Zr)O3 Thin Films Through the Chemical Solution Deposition Process. Integrated Ferroelectrics, 2004, 64, 227-236.	0.7	9
42	Composition Dependence of Microstructure and Dielectric Properties in Alkoxy-Derived Ba(Ti,Zr)O3Thin Films. Japanese Journal of Applied Physics, 2006, 45, 155-159.	1.5	9
43	Novel (Y,Yb)MnO3 Thin Films for FeRAM Application. Integrated Ferroelectrics, 2004, 65, 117-123.	0.7	8
44	INVESTIGATION OF ELECTRICAL PROPERTIES FOR (Y,Yb)MnO3/HfO2/Si and (Y,Yb)MnO3/Y2O3/Si STRUCTURES. Integrated Ferroelectrics, 2005, 75, 17-25.	0.7	8
45	Surface morphology control of zirconia thin films prepared using novel photochromic molecules. Thin Solid Films, 2008, 516, 2635-2638.	1.8	8
46	UV Processing of Oriented KTa0.50Nb0.50O3 Thin Films Journal of the Ceramic Society of Japan, 1999, 107, 1032-1036.	1.3	7
47	Preparation of Nanoporous TiO ₂ Film Using Aqueous Sol with Trehalose. Key Engineering Materials, 2004, 269, 87-90.	0.4	7
48	Wavelength Dependence of Crystallization of Alkoxy-Derived ZrO2 Thin Films Prepared by Ultraviolet Irradiation. Journal of Materials Research, 2005, 20, 3133-3140.	2.6	7
49	Effects of Substrates on Alkoxy-Derived (Y,Yb)MnO 3 Thin Films. Integrated Ferroelectrics, 2002, 47, 91-100.	0.7	6
50	Compositional Dependence of Ferroelectric Properties for (Y,Yb)MnO3 Thin Films Prepared by Chemical Solution Deposition. Integrated Ferroelectrics, 2003, 52, 55-61.	0.7	6
51	Effects of β-diketone Addition on Crystallinity of Photo-Assisted Alkoxy-Derived Zirconia Thin Films. Key Engineering Materials, 2004, 269, 125-128.	0.4	6
52	Composition Dependence of Lead-Free Ferroelectric Ba(Ti,Zr)O ₃ Thin Films Fabricated by Chemical Solution Deposition Process. Key Engineering Materials, 2004, 269, 57-60.	0.4	6
53	Effects of Hydrolysis on Photochromic ZrO ₂ Precursor Solutions. Key Engineering Materials, 2006, 301, 87-90.	0.4	6
54	Characterization of Dielectric Properties of Alkoxy-Derived (Y,Yb)MnO ₃ Ferroelectrics/Insulator Stacking Layers. Key Engineering Materials, 2006, 301, 65-70.	0.4	6

#	Article	IF	CITATIONS
55	Effects of Modified Precursor Solution on Microstructure of (Y,Yb)MnO3/HfO2/Si. Japanese Journal of Applied Physics, 2007, 46, 6956-6959.	1.5	6
56	CRYSTALLIZATION BEHAVIOR OF HfO ₂ FILMS FOR (Y,Yb)MnO ₃ /HfO ₂ /Si STRUCTURES. Integrated Ferroelectrics, 2007, 94, 3-10.	0.7	6
57	Highly dispersive α″-Fe16N2 particle synthesis using hydroxyapatite coating. Journal of Solid State Chemistry, 2015, 225, 455-458.	2.9	6
58	Phase transition, ferroelectric, and dielectric properties of layer-structured perovskite CaBi3Ti3O12â^δ thin films. Applied Physics Letters, 2001, 79, 397-399.	3.3	5
59	Photo-Assisted Control of Surface Morphology of Alkoxy-Derived ZrO ₂ Thin Films. Key Engineering Materials, 2002, 228-229, 147-154.	0.4	5
60	Frequency Dependence of Polarization Hysteresis Loop in CaBi4 Ti4 O14 Ferroelectric Thin Films. Integrated Ferroelectrics, 2004, 61, 19-23.	0.7	5
61	Current Status of Bi-Based Precursors for Integrated Ferroelectrics. Integrated Ferroelectrics, 2004, 62, 133-140.	0.7	5
62	Effect of amorphous TiO2 buffer layer on the phase formation of CaBi4Ti4O15 ferroelectric thin films. Applied Physics A: Materials Science and Processing, 2005, 81, 861-864.	2.3	5
63	Synthesis of a New Photochromic ZrO ₂ Precursor for Preparation of Functional Thin Films. Key Engineering Materials, 2006, 320, 175-178.	0.4	5
64	IMPROVEMENT OF ALKOXY-DERIVED HfO2 LAYERS FOR (Y, Yb)MnO3/HfO2/Si STRUCTURES. Integrated Ferroelectrics, 2006, 84, 121-127.	0.7	5
65	Photo-assisted crystallization of zirconia thin films and their electrical evaluation. Thin Solid Films, 2007, 515, 4004-4010.	1.8	5
66	Microstructure control of porous alumina film using aqueous sol containing poly(ethylene glycol). Journal of Electroceramics, 2008, 21, 524-527.	2.0	5
67	Dielectric and Pyroelectric Properties of Alkoxy-Derived KTa0.35Nb0.65O3Thin Film. Japanese Journal of Applied Physics, 1999, 38, 5953-5957.	1.5	4
68	Structure and Ferroelectric Properties of Alkoxy-Derived Ca2Bi4Ti5O18Thin Films on Pt(111)/TiOx/SiO2/Si(100). Japanese Journal of Applied Physics, 2002, 41, 2110-2114.	1.5	4
69	Observation of Domain Structures in Bi-Based CaBi 4 Ti 4 O 15 Thin Films by Scanning Force Microscopy. Ferroelectrics, 2003, 291, 49-54.	0.6	4
70	Characterization of Dielectric Properties of Alkoxy-Derived (Y,Yb)MnO ₃ Ferroelectrics /HfO ₂ Stacking Layers. Key Engineering Materials, 2006, 320, 73-76.	0.4	4
71	Improvement of Orientation and Characterization of Dielectric Property for (Y,Yb)MnO ₃ /HfO ₂ /Si Structures. Key Engineering Materials, 2007, 350, 107-110.	0.4	4
72	Patterning of HfO ₂ Thin Films Using Chemical Solution and Dielectric Properties. Key Engineering Materials, 2008, 388, 141-144.	0.4	4

#	Article	IF	CITATIONS
73	Preparation of ferroelectric (Y, Yb) MnO3 films by chemical solution process. Journal of the Ceramic Society of Japan, 2008, 116, 265-270.	1.1	4
74	Effects of BaBi2Ta2O9 thin buffer layer on crystallization and electrical properties of CaBi2Ta2O9 thin films on Pt-coated silicon. Journal of Applied Physics, 2001, 89, 5088-5092.	2.5	3
75	Control of Crystallinity of Alkoxy-Derived Zirconia Thin Films by UV Irradiation. Key Engineering Materials, 2003, 248, 125-128.	0.4	3
76	Construction of MFIS Structure Using Alkoxy-Derived (Y,Yb)MnO ₃ Thin Films. Key Engineering Materials, 2004, 269, 49-52.	0.4	3
77	Crystal Phase and Orientation Control in Integrated Ferroelectric CaBi ₄ Ti ₄ O ₁₅ Using a Tailored Liquid of Alkoxides. International Journal of Applied Ceramic Technology, 2005, 2, 64-72.	2.1	3
78	Dielectric and Piezoelectric Properties of Ba(Ti,Zr)O ₃ Thin Films Consisted of Nano-Crystals. Key Engineering Materials, 2006, 301, 53-56.	0.4	3
79	CHEMICAL SOLUTION DEPOSITION AND ELECTRICAL PROPERTIES OF (100)-PREDOMINANT BaTiO3 THICKER FILMS. Integrated Ferroelectrics, 2007, 88, 51-57.	0.7	3
80	Photo-assisted crystallization of zirconia thin films prepared using chelate compounds. Journal of Materials Research, 2007, 22, 2608-2616.	2.6	3
81	Structure and piezoelectric properties of 1-μm-thick polar-axis-oriented CaBi4Ti4O15 films. Applied Physics A: Materials Science and Processing, 2007, 87, 637-640.	2.3	3
82	Organic Thin-Film Transistors with Tailored Liquid Sources of HfO2as a High-κ Insulator. Japanese Journal of Applied Physics, 2010, 49, 04DK08.	1.5	3
83	Low-temperature synthesis in vacuum of c-axis oriented ferroelectric YMnO3 thin films using alkoxy-derived precursors. Integrated Ferroelectrics, 2001, 40, 155-162.	0.7	2
84	Synthesis of YMnO3thin films from alkoxy-derived precursors. Ferroelectrics, 2001, 263, 285-290.	0.6	2
85	Effect of Polymer Addition on Microstructure of Porous TiO ₂ Film. Key Engineering Materials, 2002, 228-229, 131-136.	0.4	2
86	Effects of Composition on Crystallographic Properties of Alkoxy-Derived (Y,Yb)MnO ₃ Thin Films. Key Engineering Materials, 2002, 228-229, 141-146.	0.4	2
87	Novel Ferroelectric Candidates in a Series of ABi4Ti4O15 (A: Alkaline Earth Metals) Thin Films. Integrated Ferroelectrics, 2003, 52, 3-10.	0.7	2
88	Polarization Switching in CaBi ₄ Ti ₄ O ₁₅ Ferroelectric Thin Films. Key Engineering Materials, 2004, 269, 41-44.	0.4	2
89	Effects of Flat HfO2Films Derived from Diethanolamine Solution on Structure and Properties of Metal/Ferroelectrics/Insulator/Semiconductor. Japanese Journal of Applied Physics, 2008, 47, 7561-7564.	1.5	2
90	Ferroelectric and Fatigue Properties of Alkoxy-Derived CaBi2Ta2O9 Thin Films. Materials Research Society Symposia Proceedings, 2000, 655, 126.	0.1	1

#	Article	IF	CITATIONS
91	Control of Crystal Structure of SrBi ₂ Ta ₂ O ₉ Thin Films by UV Irradiation. Key Engineering Materials, 2001, 214-215, 145-150.	0.4	1
92	Platinum-Accelerated Phase Transition in Bismuth-Based Layer-Structured Ferroelectric Thin Films. Materials Research Society Symposia Proceedings, 2002, 748, 1.	0.1	1
93	Characterization of (Y,Yb)MnO3/Y2O3/Si Prepared from Alkoxide Solutions. Ferroelectrics, 2005, 329, 107-111.	0.6	1
94	Structure and Electrical Properties of Highly (100)-Oriented Ba(Zr _{0.05} Ti _{0.95})O ₃ Films Prepared by Chemical Solution Deposition. Advanced Materials Research, 2006, 11-12, 101-104.	0.3	1
95	Electrochemical Properties of Nanoporous TiO ₂ Films. Key Engineering Materials, 2006, 301, 83-86.	0.4	1
96	Chemically Deposited (100)-Oriented BaTiO ₃ Films with Highly Concentrated Solution Using High Crystallinity BaTiO ₃ as a Buffer Layer. Key Engineering Materials, 2006, 320, 77-80.	0.4	1
97	Preparation and Characterization of Porous Alumina Film Using Sol Containing PEG. Key Engineering Materials, 2006, 320, 159-162.	0.4	1
98	Microstructure Control of Porous Alumina Film Using Aqueous Sol Containing Trehalose. Key Engineering Materials, 2007, 350, 7-10.	0.4	1
99	Construction and characterization of alkoxy-derived (Y,Yb)MnO3/HfO2/Si structures for FeRAM application. Journal of Sol-Gel Science and Technology, 2007, 42, 251-256.	2.4	1
100	Effects of UV Irradiation on Microstructure and Properties of HfO ₂ Films Prepared from Alkoxy-Derived Precursor Solution. Key Engineering Materials, 0, 421-422, 91-94.	0.4	1
101	Dielectric Properties of HfO ₂ Films Prepared on Flexible Polymer Substrates Using UV Irradiation. Key Engineering Materials, 2010, 445, 164-167.	0.4	1
102	Organic Thin-Film Transistors with Tailored Liquid Sources of High-κ HfO2Using Excimer Laser Irradiation. Japanese Journal of Applied Physics, 2011, 50, 01BCO2.	1.5	1
103	Preparation of highly dispersed core–shell α′′-Fe ₁₆ N ₂ /SiO _{2< particles using hydroxyapatite as a sintering prevention layer. Journal of the Ceramic Society of Japan, 2017, 125, 565-568.}	;/sub> 1.1	1
104	Organic Thin-Film Transistors with Tailored Liquid Sources of High-κ HfO2Using Excimer Laser Irradiation. Japanese Journal of Applied Physics, 2011, 50, 01BC02.	1.5	1
105	Chemical processing and characterization of ferroelectric thin films of bismuth-based layer-structured perovsktte cabi4ti4o15 with the octahedron number of 4. Integrated Ferroelectrics, 2001, 36, 321-329.	0.7	0
106	Preparation and Ferroelectric Properties of CaBi ₂ Ta ₂ O ₉ /BaBi ₂ Ta ₂ O ₉ Films on Pt-Passivated Silicon. Key Engineering Materials, 2001, 214-215, 139-144.	0.4	0
107	Preparation and Characterization of Layer-Structured Perovskite Ca _X Bi _{4-X} Ti ₃ O _{12-X/2} (X = 1, 2) Thin Films. Key Engineering Materials, 2002, 228-229, 93-98.	0.4	0
108	Special Issue Ceramics Integration. Integration of Ferroelectric Ca2Bi4Ti5O18 Thin Films on Pt-Passivated Si via Spin-Coating Technique Journal of the Ceramic Society of Japan, 2002, 110, 403-407.	1.3	0

Казичикі Suzuki

#	Article	IF	CITATIONS
109	Ferroelectric-Gate Field Effect Transistors Using (Y,Yb)MnO3/Y2O3/Si(111) Structures for 1T-Type FeRAMs. Integrated Ferroelectrics, 2004, 65, 169-174.	0.7	0
110	Ferroelectric characteristics of silicate-bound Bi4Ti3O12 thin films. Applied Physics A: Materials Science and Processing, 2005, 80, 271-273.	2.3	0
111	Structure and ferro-/piezoelectric properties of bimorph-shape CaBi4Ti4O15 films on Pt foils. Applied Physics A: Materials Science and Processing, 2005, 80, 1481-1484.	2.3	0
112	Ferro- and Piezoelectric Properties of CaBi4Ti4O15 Films with Polar Axis Orientation. Integrated Ferroelectrics, 2005, 69, 143-149.	0.7	0
113	Downsizing of HfO2Layer for Pt/(Y,Yb)MnO3/HfO2/Si Structure. Japanese Journal of Applied Physics, 2006, 45, 7332-7335.	1.5	0
114	FERRO- AND PIEZOELECTRIC CHARACTERISTICS OF BOTTOM-UP FABRICATED CaBi4Ti4O15 FILMS WITH PREFERRED ORIENTATION. Integrated Ferroelectrics, 2006, 80, 21-28.	0.7	0
115	Morphology Control of Zirconia Thin Films Prepared Using Photochromic Precursors. Key Engineering Materials, 2007, 350, 133-136.	0.4	0
116	Construction of the (Y,Yb)MnO3/HfO2Stacking Layers through the Chemical Solution Process. Ferroelectrics, 2007, 357, 196-200.	0.6	0
117	Dielectric Properties of Alkoxy-Derived BaTiO <inf>3</inf> Films on LaNiO <inf>3</inf> /Pt/TiO <inf>x</inf> /Si(100). Applications of Ferroelectrics, IEEE International Symposium on, 2007, , .	0.0	0
118	Bottom-up fabrication and piezoelectric properties of CaBi4Ti4O15 micro-plateaus. Applied Physics A: Materials Science and Processing, 2007, 88, 273-276.	2.3	0
119	Effect of Gel-Films-Thickness and Sintering Conditions on the Crystal Structure and Microstructure of Alkoxy-Derived BaTiO ₃ Thin Films. Key Engineering Materials, 0, 388, 171-174.	0.4	0
120	Structure and electrical characteristics of bottom-up BaTiO3 films on Si. , 2008, , .		0
121	Polar Axis Orientation and Electrical Properties of Alkoxy-Derived One Micro-Meter-Thick Ferro-/Piezoelectric Films. , 0, , 33-42.		0