
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2609786/publications.pdf Version: 2024-02-01

SVEN DEDNED

#	Article	IF	CITATIONS
1	Recurrent Fusion of <i>TMPRSS2</i> and ETS Transcription Factor Genes in Prostate Cancer. Science, 2005, 310, 644-648.	12.6	3,541
2	Comprehensive genomic profiles of small cell lung cancer. Nature, 2015, 524, 47-53.	27.8	1,634
3	Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics, 2012, 44, 1104-1110.	21.4	1,186
4	Characterizing the cancer genome in lung adenocarcinoma. Nature, 2007, 450, 893-898.	27.8	1,020
5	Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20007-20012.	7.1	927
6	SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genetics, 2009, 41, 1238-1242.	21.4	862
7	Frequent and Focal <i>FGFR1</i> Amplification Associates with Therapeutically Tractable FGFR1 Dependency in Squamous Cell Lung Cancer. Science Translational Medicine, 2010, 2, 62ra93.	12.4	761
8	Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets. Cancer Discovery, 2011, 1, 487-495.	9.4	725
9	Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature, 2015, 526, 700-704.	27.8	478
10	TMPRSS2:ERG Fusion-Associated Deletions Provide Insight into the Heterogeneity of Prostate Cancer. Cancer Research, 2006, 66, 8337-8341.	0.9	475
11	TMPRSS2-ERG Fusion Prostate Cancer: An Early Molecular Event Associated With Invasion. American Journal of Surgical Pathology, 2007, 31, 882-888.	3.7	394
12	Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Human Pathology, 2007, 38, 696-701.	2.0	388
13	Prevention and early detection of prostate cancer. Lancet Oncology, The, 2014, 15, e484-e492.	10.7	372
14	Gleason Score and Lethal Prostate Cancer: Does 3 + 4 = 4 + 3?. Journal of Clinical Oncology, 2009, 27, 3459-3464.	1.6	329
15	The Role of SPINK1 in ETS Rearrangement-Negative Prostate Cancers. Cancer Cell, 2008, 13, 519-528.	16.8	303
16	Estrogen-Dependent Signaling in a Molecularly Distinct Subclass of Aggressive Prostate Cancer. Journal of the National Cancer Institute, 2008, 100, 815-825.	6.3	286
17	Rationale for co-targeting IGF-1R and ALK in ALK fusion–positive lung cancer. Nature Medicine, 2014, 20, 1027-1034.	30.7	243
18	<i>CD74–NRG1</i> Fusions in Lung Adenocarcinoma. Cancer Discovery, 2014, 4, 415-422.	9.4	238

#	Article	IF	CITATIONS
19	EML4-ALK Fusion Lung Cancer: A Rare Acquired Event. Neoplasia, 2008, 10, 298-302.	5.3	231
20	A mechanistic classification of clinical phenotypes in neuroblastoma. Science, 2018, 362, 1165-1170.	12.6	213
21	Prevalence of <i>TMPRSS2-ERG</i> Fusion Prostate Cancer among Men Undergoing Prostate Biopsy in the United States. Clinical Cancer Research, 2009, 15, 4706-4711.	7.0	205
22	Concurrent AURKA and MYCN Gene Amplifications Are Harbingers of Lethal TreatmentRelated Neuroendocrine Prostate Cancer. Neoplasia, 2013, 15, 1-IN4.	5.3	205
23	Characterization of <i>TMPRSS2-ERG</i> Fusion High-Grade Prostatic Intraepithelial Neoplasia and Potential Clinical Implications. Clinical Cancer Research, 2008, 14, 3380-3385.	7.0	200
24	Imaging prostate cancer with 11C-choline PET/CT. Journal of Nuclear Medicine, 2006, 47, 1249-54.	5.0	191
25	SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Modern Pathology, 2011, 24, 944-953.	5.5	177
26	TMPRSS2-ERG Fusion Heterogeneity in Multifocal Prostate Cancer: Clinical and Biologic Implications. Urology, 2007, 70, 630-633.	1.0	146
27	<scp>NOTCH</scp> , <scp>ASCL1</scp> , p53 and <scp>RB</scp> alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas. International Journal of Cancer, 2016, 138, 927-938.	5.1	143
28	Prevalence of TMPRSS2–ERG and SLC45A3–ERG gene fusions in a large prostatectomy cohort. Modern Pathology, 2010, 23, 539-546.	5.5	141
29	FGFR1 mRNA and Protein Expression, not Gene Copy Number, Predict FGFR TKI Sensitivity across All Lung Cancer Histologies. Clinical Cancer Research, 2014, 20, 3299-3309.	7.0	141
30	mRNA Expression Signature of Gleason Grade Predicts Lethal Prostate Cancer. Journal of Clinical Oncology, 2011, 29, 2391-2396.	1.6	140
31	Web-TCGA: an online platform for integrated analysis of molecular cancer data sets. BMC Bioinformatics, 2016, 17, 72.	2.6	140
32	Human prostate sphereâ€forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate, 2010, 70, 491-501.	2.3	130
33	<i>SOX2</i> Expression Associates with Stem Cell State in Human Ovarian Carcinoma. Cancer Research, 2013, 73, 5544-5555.	0.9	129
34	Molecular Characterization of TMPRSS2-ERG Gene Fusion in the NCI-H660 Prostate Cancer Cell Line: A New Perspective for an Old Model. Neoplasia, 2007, 9, 200-IN3.	5.3	119
35	Definition of a fluorescence in-situ hybridization score identifies high- and low-level FGFR1 amplification types in squamous cell lung cancer. Modern Pathology, 2012, 25, 1473-1480.	5.5	118
36	ERG rearrangement is specific to prostate cancer and does not occur in any other common tumor. Modern Pathology, 2010, 23, 1061-1067.	5.5	114

#	Article	IF	CITATIONS
37	Expression of Prostate-Specific Membrane Antigen (PSMA) on Biopsies Is an Independent Risk Stratifier of Prostate Cancer Patients at Time of Initial Diagnosis. Frontiers in Oncology, 2018, 8, 623.	2.8	108
38	An Oncogenic Role for <i>ETV1</i> in Melanoma. Cancer Research, 2010, 70, 2075-2084.	0.9	107
39	N-myc Downstream Regulated Gene 1 (NDRG1) Is Fused to ERG in Prostate Cancer. Neoplasia, 2009, 11, 804-W18.	5.3	105
40	Clinical significance of ∏Fâ€1 protein expression and <i>∏Fâ€1</i> gene amplification in lung adenocarcinoma. Journal of Cellular and Molecular Medicine, 2009, 13, 1977-1986.	3.6	98
41	PD-L1 expression in non-small cell lung cancer: Correlations with genetic alterations. Oncolmmunology, 2016, 5, e1131379.	4.6	94
42	Quantifying Telomere Lengths of Human Individual Chromosome Arms by Centromere-Calibrated Fluorescence in Situ Hybridization and Digital Imaging. American Journal of Pathology, 2003, 163, 1751-1756.	3.8	92
43	Novel approaches to target the microenvironment of bone metastasis. Nature Reviews Clinical Oncology, 2021, 18, 488-505.	27.6	91
44	Distinct genomic aberrations associated with <i>ERG</i> rearranged prostate cancer. Genes Chromosomes and Cancer, 2009, 48, 366-380.	2.8	86
45	AIM2 Drives Joint Inflammation in a Self-DNA Triggered Model of Chronic Polyarthritis. PLoS ONE, 2015, 10, e0131702.	2.5	85
46	<i>ATM</i> Deficiency Is Associated with Sensitivity to PARP1- and ATR Inhibitors in Lung Adenocarcinoma. Cancer Research, 2017, 77, 3040-3056.	0.9	81
47	Amplification of chromosomal segment 4q12 in non-small cell lung cancer. Cancer Biology and Therapy, 2009, 8, 2042-2050.	3.4	78
48	FGFR1 Expression Levels Predict BGJ398 Sensitivity of FGFR1-Dependent Head and Neck Squamous Cell Cancers. Clinical Cancer Research, 2015, 21, 4356-4364.	7.0	75
49	Pan-Cancer Analysis of the Mediator Complex Transcriptome Identifies CDK19 and CDK8 as Therapeutic Targets in Advanced Prostate Cancer. Clinical Cancer Research, 2017, 23, 1829-1840.	7.0	74
50	Differences in Frequency of ERG Oncoprotein Expression Between Index Tumors of Caucasian and African American Patients With Prostate Cancer. Urology, 2012, 80, 749-753.	1.0	73
51	Assembly of methylated KDM1A and CHD1 drives androgen receptor–dependent transcription and translocation. Nature Structural and Molecular Biology, 2016, 23, 132-139.	8.2	70
52	KDM5C Is Overexpressed in Prostate Cancer and Is a Prognostic Marker for Prostate-Specific Antigen-Relapse Following Radical Prostatectomy. American Journal of Pathology, 2014, 184, 2430-2437.	3.8	69
53	Expression and role of the embryonic protein SOX2 in head and neck squamous cell carcinoma. Carcinogenesis, 2014, 35, 1636-1642.	2.8	66
54	Array comparative genomic hybridization reveals similarities between nodular lymphocyte predominant Hodgkin lymphoma and T cell/histiocyte rich large B cell lymphoma. British Journal of Haematology, 2015, 169, 415-422.	2.5	66

#	Article	IF	CITATIONS
55	<i>ERG</i> rearrangement in small cell prostatic and lung cancer. Histopathology, 2010, 56, 937-943.	2.9	64
56	Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. Nature Genetics, 2021, 53, 1673-1685.	21.4	61
57	Aberrant Cytoplasmic Expression of p63 and Prostate Cancer Mortality. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 595-600.	2.5	60
58	Validation of a TFE3 Break-apart FISH Assay for Xp11.2 Translocation Renal Cell Carcinomas. Diagnostic Molecular Pathology, 2011, 20, 129-137.	2.1	60
59	Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget, 2015, 6, 35542-35555.	1.8	60
60	DNA methylation-based reclassification of olfactory neuroblastoma. Acta Neuropathologica, 2018, 136, 255-271.	7.7	59
61	KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells. Nature Structural and Molecular Biology, 2019, 26, 361-371.	8.2	57
62	ERG Rearrangement Metastasis Patterns in Locally Advanced Prostate Cancer. Urology, 2010, 75, 762-767.	1.0	56
63	Fibroblast growth factor receptor 1 amplification is a common event in squamous cell carcinoma of the head and neck. Modern Pathology, 2013, 26, 1298-1306.	5.5	54
64	Immune Cell Infiltration of the Primary Tumor, Not PD-L1 Status, Is Associated With Improved Response to Checkpoint Inhibition in Metastatic Melanoma. Frontiers in Medicine, 2019, 6, 27.	2.6	54
65	Development and Clinical Validation of a Real-Time PCR Assay for PITX2 DNA Methylation to Predict Prostate-Specific Antigen Recurrence in Prostate Cancer Patients Following Radical Prostatectomy. Journal of Molecular Diagnostics, 2013, 15, 270-279.	2.8	53
66	The activation of OR51E1 causes growth suppression of human prostate cancer cells. Oncotarget, 2016, 7, 48231-48249.	1.8	53
67	GNAS Sequencing Identifies IPMN-specific Mutations in a Subgroup of Diminutive Pancreatic Cysts Referred to as "Incipient IPMNs― American Journal of Surgical Pathology, 2014, 38, 360-363.	3.7	52
68	Quantification of protein expression in cells and cellular subcompartments on immunohistochemical sections using a computer supported image analysis system. Histology and Histopathology, 2013, 28, 605-10.	0.7	52
69	ERG Cooperates with Androgen Receptor in Regulating Trefoil Factor 3 in Prostate Cancer Disease Progression. Neoplasia, 2010, 12, 1031-IN22.	5.3	51
70	Low-level <i>APC</i> mutational mosaicism is the underlying cause in a substantial fraction of unexplained colorectal adenomatous polyposis cases. Journal of Medical Genetics, 2016, 53, 172-179.	3.2	51
71	Disruption of the PRKCD–FBXO25–HAX-1 axis attenuates the apoptotic response and drives lymphomagenesis. Nature Medicine, 2014, 20, 1401-1409.	30.7	50
72	Recurrent HNSCC Harbor an Immunosuppressive Tumor Immune Microenvironment Suggesting Successful Tumor Immune Evasion. Clinical Cancer Research, 2021, 27, 632-644.	7.0	49

#	Article	IF	CITATIONS
73	Rationale for Treatment of Metastatic Squamous Cell Carcinoma of the Lung Using Fibroblast Growth Factor Receptor Inhibitors. Chest, 2012, 142, 1020-1026.	0.8	47
74	Comparison of different prostatic markers in lymph node and distant metastases of prostate cancer. Modern Pathology, 2015, 28, 138-145.	5.5	45
75	A Case of Sudden Cardiac Death Due to Isolated Eosinophilic Coronary Arteritis. Chest, 2005, 128, 1047-1050.	0.8	42
76	Survival According to BRAF-V600 Tumor Mutations – An Analysis of 437 Patients with Primary Melanoma. PLoS ONE, 2014, 9, e86194.	2.5	42
77	Prognostic factors in lymph node-positive prostate cancer. Urology, 2006, 67, 1016-1021.	1.0	41
78	The peripheral zone of the prostate is more prone to tumor development than the transitional zone: Is the ETS family the key?. Molecular Medicine Reports, 2012, 5, 313-6.	2.4	41
79	Fibroblast growth factor receptor 1 gene amplification in pancreatic ductal adenocarcinoma. Histopathology, 2013, 63, 157-166.	2.9	41
80	Exome sequencing identifies potential novel candidate genes in patients with unexplained colorectal adenomatous polyposis. Familial Cancer, 2016, 15, 281-288.	1.9	40
81	Loss of SLC45A3 protein (prostein) expression in prostate cancer is associated with <i>SLC45A3â€ERG</i> gene rearrangement and an unfavorable clinical course. International Journal of Cancer, 2013, 132, 807-812.	5.1	39
82	Nonamplified FGFR1 Is a Growth Driver in Malignant Pleural Mesothelioma. Molecular Cancer Research, 2014, 12, 1460-1469.	3.4	38
83	Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Biochemical Pharmacology, 2009, 78, 1127-1138.	4.4	37
84	Sequential resection of malignant ureteral margins at radical cystectomy: a critical assessment of the value of frozen section analysis. World Journal of Urology, 2011, 29, 451-456.	2.2	37
85	SOX2 Expression and Prognostic Significance in Ovarian Carcinoma. International Journal of Gynecological Pathology, 2013, 32, 358-367.	1.4	37
86	Molecular and functional interactions between AKT and SOX2 in breast carcinoma. Oncotarget, 2015, 6, 43540-43556.	1.8	37
87	Prominent Oncogenic Roles of EVI1 in Breast Carcinoma. Cancer Research, 2017, 77, 2148-2160.	0.9	36
88	Implication of the Receptor Tyrosine Kinase AXL in Head and Neck Cancer Progression. International Journal of Molecular Sciences, 2017, 18, 7.	4.1	36
89	Relevance of cohort design for studying the frequency of the ERG rearrangement in prostate cancer. Histopathology, 2011, 58, 1028-1036.	2.9	33
90	Genome-Wide Linkage Analysis of <i>TMPRSS2-ERG</i> Fusion in Familial Prostate Cancer. Cancer Research, 2009, 69, 640-646.	0.9	32

#	Article	IF	CITATIONS
91	Role of the NK Cell-Activating Receptor CRACC in Periodontitis. Infection and Immunity, 2013, 81, 690-696.	2.2	32
92	Sex Determining Region Y-Box 2 (SOX2) Amplification Is an Independent Indicator of Disease Recurrence in Sinonasal Cancer. PLoS ONE, 2013, 8, e59201.	2.5	32
93	Identification of novel differentially expressed IncRNA and mRNA transcripts in clear cell renal cell carcinoma by expression profiling. Genomics Data, 2015, 5, 173-175.	1.3	32
94	Activation of Invariant NK T Cells in Periodontitis Lesions. Journal of Immunology, 2013, 190, 2282-2291.	0.8	30
95	Genomic Testing in Patients with Metastatic Castration-resistant Prostate Cancer: A Pragmatic Guide for Clinicians. European Urology, 2021, 79, 519-529.	1.9	30
96	A fatal case of necrotizing sinusitis due to toxigenic Corynebacterium ulcerans. International Journal of Medical Microbiology, 2002, 292, 59-63.	3.6	29
97	Single-Cell Genetic Analysis Reveals Insights into Clonal Development of Prostate Cancers and Indicates Loss of PTEN as a Marker of Poor Prognosis. American Journal of Pathology, 2014, 184, 2671-2686.	3.8	29
98	Exome Enrichment and SOLiD Sequencing of Formalin Fixed Paraffin Embedded (FFPE) Prostate Cancer Tissue. International Journal of Molecular Sciences, 2012, 13, 8933-8942.	4.1	28
99	Prognostic significance of phospho-histone H3 in prostate carcinoma. World Journal of Urology, 2014, 32, 703-707.	2.2	28
100	An illustration of the potential for mapping MRI/MRS parameters with genetic over-expression profiles in human prostate cancer. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2008, 21, 411-421.	2.0	27
101	Targeting DDR2 in head and neck squamous cell carcinoma with dasatinib. International Journal of Cancer, 2016, 139, 2359-2369.	5.1	27
102	Loss of Mucosal p32/gC1qR/HABP1 Triggers Energy Deficiency and Impairs Goblet Cell Differentiation in Ulcerative Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 229-250.	4.5	27
103	Prognostic significance of venous tumour thrombus consistency in patients with renal cell carcinoma (<scp>RCC</scp>). BJU International, 2014, 113, 209-217.	2.5	26
104	Fibroblast Growth Factor Receptor 1 as a Putative Therapy Target in Colorectal Cancer. Digestion, 2013, 88, 172-181.	2.3	25
105	A randomized trial (RAREST-01) comparing Mepitel® Film and standard care for prevention of radiation dermatitis in patients irradiated for locally advanced squamous cell carcinoma of the head-and-neck (SCCHN). Radiotherapy and Oncology, 2019, 139, 79-82.	0.6	25
106	Lung cancer biomarker testing: perspective from Europe. Translational Lung Cancer Research, 2020, 9, 887-897.	2.8	25
107	In Situ Evidence of KRAS Amplification and Association With Increased p21 Levels in Non–Small Cell Lung Carcinoma. American Journal of Clinical Pathology, 2009, 132, 500-505.	0.7	24
108	<i>MED15</i> , encoding a subunit of the mediator complex, is overexpressed at high frequency in castrationâ€resistant prostate cancer. International Journal of Cancer, 2014, 135, 19-26.	5.1	24

#	Article	IF	CITATIONS
109	Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types. Oncotarget, 2016, 7, 23043-23055.	1.8	24
110	Increased mediator complex subunit CDK19 expression associates with aggressive prostate cancer. International Journal of Cancer, 2020, 146, 577-588.	5.1	23
111	Expression changes of CAV1 and EZH2, located on 7q31â^¼q36, are rarely related to genomic alterations in primary prostate carcinoma. Cancer Genetics and Cytogenetics, 2008, 182, 103-110.	1.0	22
112	Comparison of p40 (Δ <scp>N</scp> p63) and p63 expression in prostate tissues – which one is the superior diagnostic marker for basal cells?. Histopathology, 2013, 63, 50-56.	2.9	22
113	Prognostic relevance of proliferation markers (Ki-67, PHH3) within the cross-relation of ERG translocation and androgen receptor expression in prostate cancer. Pathology, 2015, 47, 629-636.	0.6	22
114	Immunometabolic Determinants of Chemoradiotherapy Response and Survival in Head and Neck Squamous Cell Carcinoma. American Journal of Pathology, 2018, 188, 72-83.	3.8	22
115	Clinical and Molecular Implications of MED15 in Head and Neck Squamous Cell Carcinoma. American Journal of Pathology, 2015, 185, 1114-1122.	3.8	21
116	Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer. International Journal of Cancer, 2017, 141, 1643-1653.	5.1	21
117	Prognostic Value of the New Prostate Cancer International Society of Urological Pathology Grade Groups. Frontiers in Medicine, 2017, 4, 157.	2.6	21
118	Tumor budding as a prognostic factor in pancreatic ductal adenocarcinoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 476, 561-568.	2.8	21
119	MACE expression in head and neck squamous cell carcinoma primary tumors, lymph node metastases and respective recurrences-implications for immunotherapy. Oncotarget, 2017, 8, 14719-14735.	1.8	21
120	Testing a Multigene Signature of Prostate Cancer Death in the Swedish Watchful Waiting Cohort. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 1682-1688.	2.5	19
121	<i>Ercc1</i> Deficiency Promotes Tumorigenesis and Increases Cisplatin Sensitivity in a <i>Tp53</i> Context-Specific Manner. Molecular Cancer Research, 2016, 14, 1110-1123.	3.4	18
122	TRIM24 as an independent prognostic biomarker for prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2019, 37, 576.e1-576.e10.	1.6	18
123	Differential and Mutually Exclusive Expression of CD95 and CD95 Ligand in Epithelia of Normal Pancreas and Chronic Pancreatitis. Laboratory Investigation, 2001, 81, 317-326.	3.7	17
124	IL-6 Overexpression in ERG-Positive Prostate Cancer Is Mediated by Prostaglandin Receptor EP2. American Journal of Pathology, 2016, 186, 974-984.	3.8	17
125	MERTK as a novel therapeutic target in head and neck cancer. Oncotarget, 2016, 7, 32678-32694.	1.8	17
126	IL-4/5 signalling plays an important role during Litomosoides sigmodontis infection, influencing both immune system regulation and tissue pathology in the thoracic cavity. International Journal for Parasitology, 2017, 47, 951-960.	3.1	16

#	Article	IF	CITATIONS
127	MED15 overexpression in prostate cancer arises during androgen deprivation therapy via PI3K/mTOR signaling. Oncotarget, 2017, 8, 7964-7976.	1.8	16
128	Role of free testosterone levels in patients with metastatic castration-resistant prostate cancer receiving second-line therapy. Oncology Letters, 2017, 13, 22-28.	1.8	15
129	Comparison of PD-L1 expression between paired cytologic and histologic specimens from non-small cell lung cancer patients. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2020, 476, 261-271.	2.8	15
130	GC1qR Cleavage by Caspase-1 Drives Aerobic Glycolysis in Tumor Cells. Frontiers in Oncology, 2020, 10, 575854.	2.8	15
131	Detection of TMPRSS2-ERG Fusion Gene Expression in Prostate Cancer Specimens by a Novel Assay Using Branched DNA. Urology, 2009, 74, 1156-1161.	1.0	14
132	Landscape of chromosome number changes in prostate cancer progression. World Journal of Urology, 2013, 31, 1489-1495.	2.2	14
133	Mediator Complex Subunit MED1 Protein Expression Is Decreased during Bladder Cancer Progression. Frontiers in Medicine, 2017, 4, 30.	2.6	13
134	The new ISUP 2014/WHO 2016 prostate cancer grade group system: first résumé 5Âyears after introduction and systemic review of the literature. World Journal of Urology, 2020, 38, 657-662.	2.2	12
135	ERG rearrangement in local recurrences compared to distant metastases of castration-resistant prostate cancer. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2012, 461, 157-162.	2.8	11
136	Immunohistochemical assessment of lymphatic and blood vessel invasion in T1 urothelial carcinoma of the bladder. Scandinavian Journal of Urology, 2015, 49, 382-387.	1.0	11
137	Evaluation of FGFR3 as a Therapeutic Target in Head and Neck Squamous Cell Carcinoma. Targeted Oncology, 2016, 11, 631-642.	3.6	10
138	αâ€Methylacylâ€CoA racemase expression and lethal prostate cancer in the Physicians' Health Study and Health Professionals Followâ€up Study. Prostate, 2012, 72, 301-306.	2.3	9
139	Prognostic Significance and Functional Role of CEP57 in Prostate Cancer. Translational Oncology, 2015, 8, 487-496.	3.7	9
140	Prostate cancer risk regions at 8q24 and 17q24 are differentially associated with somatic <i>TMPRSS2:ERG</i> fusion status. Human Molecular Genetics, 2016, 25, ddw349.	2.9	8
141	Fountain of youth for squamous cell carcinomas? On the epigenetic age of nonâ€small cell lung cancer and corresponding tumorâ€free lung tissues. International Journal of Cancer, 2018, 143, 3061-3070.	5.1	8
142	Histomorphological analysis of false positive PI-RADS 4 and 5 lesions. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 636.e7-636.e12.	1.6	7
143	CDK19 as a Potential HPV-Independent Biomarker for Recurrent Disease in HNSCC. International Journal of Molecular Sciences, 2020, 21, 5508.	4.1	6
144	TRIM24 Expression as an Independent Biomarker for Prognosis and Tumor Recurrence in HNSCC. Journal of Personalized Medicine, 2022, 12, 991.	2.5	6

#	Article	IF	CITATIONS
145	Analysis of tripartite motif (TRIM) family gene expression in prostate cancer bone metastases. Carcinogenesis, 2021, 42, 1475-1484.	2.8	5
146	Inhibition of Cyclin-Dependent Kinase 8/Cyclin-Dependent Kinase 19 Suppresses ItsÂPro-Oncogenic Effects in Prostate Cancer. American Journal of Pathology, 2022, 192, 813-823.	3.8	4
147	Targeting cyclin-dependent kinase 7—association between CDK7 and pMED1 expression in prostate cancer tissue. Carcinogenesis, 2022, 43, 779-786.	2.8	4
148	CDK19 as a diagnostic marker for high-grade prostatic intraepithelial neoplasia. Human Pathology, 2021, 117, 60-67.	2.0	3
149	Up-regulation of POM121 is linked to prostate cancer aggressiveness and serves as a prognostic biomarker. Urologic Oncology: Seminars and Original Investigations, 2022, 40, 380.e11-380.e18.	1.6	1
150	<i>In silico</i> analysis of anti-leukemia immune response and immune evasion in acute myeloid leukemia. Leukemia and Lymphoma, 2018, 59, 2493-2496.	1.3	0