Klaus Winter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2609062/publications.pdf Version: 2024-02-01

KIALIS WINTED

#	Article	lF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
2	Photoinhibition and Zeaxanthin Formation in Intact Leaves. Plant Physiology, 1987, 84, 218-224.	2.3	716
3	Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytologist, 2013, 200, 950-965.	3.5	475
4	Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Molecular Phylogenetics and Evolution, 2014, 71, 55-78.	1.2	333
5	Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3703-3708.	3.3	265
6	Crassulacean acid metabolism in australian vascular epiphytes and some related species. Oecologia, 1983, 57, 129-141.	0.9	216
7	A roadmap for research on crassulacean acid metabolism (<scp>CAM</scp>) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytologist, 2015, 207, 491-504.	3.5	211
8	NaCl-induzierter crassulaceensärestoffwechsel bei Mesembryanthemum crystallinum. Zeitschrift Für Pflanzenphysiologie, 1972, 67, 166-170.	1.4	198
9	Crassulacean Acid Metabolism and Epiphytism Linked to Adaptive Radiations in the Orchidaceae. Plant Physiology, 2009, 149, 1838-1847.	2.3	194
10	Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. Journal of Experimental Botany, 2014, 65, 3425-3441.	2.4	180
11	Evolution along the crassulacean acid metabolism continuum. Functional Plant Biology, 2010, 37, 995.	1.1	177
12	How Closely Do the δ13C Values of Crassulacean Acid Metabolism Plants Reflect the Proportion of CO2 Fixed during Day and Night?. Plant Physiology, 2002, 129, 1843-1851.	2.3	167
13	Intracellular Localization of Enzymes of Carbon Metabolism in <i>Mesembryanthemum crystallinum</i> Exhibiting C ₃ Photosynthetic Characteristics or Performing Crassulacean Acid Metabolism. Plant Physiology, 1982, 69, 300-307.	2.3	165
14	Seasonal shift from C3 photosynthesis to Crassulacean Acid Metabolism in Mesembryanthemum crystallinum growing in its natural environment. Oecologia, 1978, 34, 225-237.	0.9	164
15	Activity of enzymes of carbon metabolism during the induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum L. Planta, 1982, 155, 8-16.	1.6	160
16	The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications, 2017, 8, 1899.	5.8	159
17	High susceptibility to photoinhibition of young leaves of tropical forest trees. Planta, 1995, 197, 583.	1.6	155
18	Photosynthetic pathways in Bromeliaceae: phylogenetic and ecological significance of CAM and C ₃ based on carbon isotope ratios for 1893 species. Botanical Journal of the Linnean Society, 2015, 178, 169-221.	0.8	148

#	Article	IF	CITATIONS
19	C4 plants of high biomass in arid regions of asia-occurrence of C4 photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR. Oecologia, 1981, 48, 100-106.	0.9	132
20	Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. Functional Plant Biology, 2005, 32, 397.	1.1	129
21	<i>InÂsitu</i> temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes. New Phytologist, 2017, 214, 1103-1117.	3.5	129
22	On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoe, and Opuntia. Journal of Experimental Botany, 2007, 59, 1829-1840.	2.4	124
23	Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Functional Plant Biology, 2013, 40, 531.	1.1	118
24	Crassulacean acid metabolism: a continuous or discrete trait?. New Phytologist, 2015, 208, 73-78.	3.5	117
25	Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. Functional Plant Biology, 2005, 32, 381.	1.1	108
26	Increased xanthophyll cycle activity and reduced D1 protein inactivation related to photoinhibition in two plant systems acclimated to excess light. Plant Science, 1996, 115, 237-250.	1.7	103
27	Properties of phosphoenolpyruvate carboxylase in rapidly prepared, desalted leaf extracts of the Crassulacean acid metabolism plant Mesembryanthemum crystallinum L Planta, 1982, 154, 298-308.	1.6	102
28	Transpiration efficiency of a tropical pioneer tree (Ficus insipida) in relation to soil fertility. Journal of Experimental Botany, 2007, 58, 3549-3566.	2.4	101
29	High-temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. Functional Plant Biology, 2010, 37, 890.	1.1	100
30	Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance. Global Change Biology, 2014, 20, 2915-2926.	4.2	96
31	The response of five tropical dicotyledon species to solar ultravioletâ€B radiation. American Journal of Botany, 1995, 82, 445-453.	0.8	94
32	Ecophysiology of constitutive and facultative CAM photosynthesis. Journal of Experimental Botany, 2019, 70, 6495-6508.	2.4	94
33	Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae. American Journal of Botany, 2001, 88, 1371-1389.	0.8	93
34	Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in <i>Talinum triangulare</i> . Plant Physiology, 2016, 170, 102-122.	2.3	93
35	Environment or Development? Lifetime Net CO2 Exchange and Control of the Expression of Crassulacean Acid Metabolism in Mesembryanthemum crystallinum Â. Plant Physiology, 2007, 143, 98-107.	2.3	91
36	Daily Changes in CO ₂ and Water Vapor Exchange, Chlorophyll Fluorescence, and Leaf Water Relations in the Halophyte <i>Mesembryanthemum crystallinum</i> during the Induction of Crassulacean Acid Metabolism in Response to High NaCl Salinity. Plant Physiology, 1991, 95, 768-776.	2.3	84

#	Article	IF	CITATIONS
37	Photosynthetic acclimation to warming in tropical forest tree seedlings. Journal of Experimental Botany, 2017, 68, 2275-2284.	2.4	81
38	Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Functional Plant Biology, 2009, 36, 20.	1.1	80
39	Xanthophyll-cycle pigments and photosynthetic capacity in tropical forest species: a comparative field study on canopy, gap and understory plants. Oecologia, 1995, 104, 280-290.	0.9	77
40	Carbon isotope ratio and the extent of daily CAM use by Bromeliaceae. New Phytologist, 2002, 156, 75-83.	3.5	77
41	In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. Plant, Cell and Environment, 2017, 40, 3055-3068.	2.8	74
42	Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings. Journal of Experimental Botany, 2013, 64, 3817-3828.	2.4	71
43	? 13C values and crassulacean acid metabolism in Clusia species from Panama. Trees - Structure and Function, 2004, 18, 658-668.	0.9	69
44	Annual carbon balance and nitrogenâ€use efficiency in tropical C 3 and CAM epiphytes. New Phytologist, 1994, 126, 481-492.	3.5	68
45	Temperature response of CO2 exchange in three tropical tree species. Functional Plant Biology, 2016, 43, 468.	1.1	68
46	Capacity of protection against ultraviolet radiation in sun and shade leaves of tropical forest plants. Functional Plant Biology, 2003, 30, 533.	1.1	68
47	Influence of Nitrate and Ammonia on Photosynthetic Characteristics and Leaf Anatomy of <i>Moricandia arvensis</i> . Plant Physiology, 1982, 70, 616-625.	2.3	67
48	Effects of Solar Ultraviolet Radiation on the Potential Efficiency of Photosystem II in Leaves of Tropical Plants. Plant Physiology, 1999, 121, 1349-1358.	2.3	66
49	The incidence of crassulacean acid metabolism in Orchidaceae derived from carbon isotope ratios: a checklist of the flora of Panama and Costa Rica. Botanical Journal of the Linnean Society, 0, 163, 194-222.	0.8	65
50	Elevated nightâ€ŧime temperatures increase growth in seedlings of two tropical pioneer tree species. New Phytologist, 2013, 197, 1185-1192.	3.5	65
51	?13C values of some succulent plants from Madagascar. Oecologia, 1979, 40, 103-112.	0.9	64
52	Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum increases reproductive success under conditions of drought and salinity stress. Oecologia, 1992, 92, 475-479.	0.9	64
53	Responses of Legume Versus Nonlegume Tropical Tree Seedlings to Elevated CO2 Concentration Â. Plant Physiology, 2011, 157, 372-385.	2.3	64
54	Photosynthetic CO 2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO 2. Planta, 2003, 218, 152-158.	1.6	63

#	Article	IF	CITATIONS
55	The effects of salinity, crassulacean acid metabolism and plant age on the carbon isotope composition of Mesembryanthemum crystallinum L., a halophytic C3-CAM species. Planta, 2005, 222, 201-209.	1.6	63
56	Multiple isoforms of phosphoenolpyruvate carboxylase in the Orchidaceae (subtribe Oncidiinae): implications for the evolution of crassulacean acid metabolism. Journal of Experimental Botany, 2014, 65, 3623-3636.	2.4	62
57	Light and dark CO2 fixation in Clusia uvitana and the effects of plant water status and CO2 availability. Oecologia, 1992, 91, 47-51.	0.9	60
58	A oneâ€year study on carbon, water and nutrient relationships in a tropical C 3 AM hemiâ€epiphyte, Clusia uvitana Pittier. New Phytologist, 1994, 127, 45-60.	3.5	57
59	High rates of photosynthesis in the tropical pioneer tree, Ficus insipida Willd Flora: Morphology, Distribution, Functional Ecology of Plants, 1995, 190, 265-272.	0.6	57
60	Photosynthesis, Reorganized. Science, 2011, 332, 311-312.	6.0	57
61	Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients. Functional Plant Biology, 2011, 38, 576.	1.1	53
62	Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight. Photosynthesis Research, 2012, 113, 273-285.	1.6	52
63	Regulatory protein phosphorylation of phosphoenolpyruvate carboxylase in the facultative crassulacean-acid-metabolism plant. Mesembryanthemum crystallinum L FEBS Journal, 1992, 209, 95-101.	0.2	51
64	Responses of communities of tropical tree species to elevated CO 2 in a forest clearing. Oecologia, 1998, 116, 207-218.	0.9	50
65	Diurnal changes in chlorophylla fluorescence and carotenoid composition inOpuntia ficus-indica, a CAM plant, and in three C3 species in Portugal during summer. Oecologia, 1992, 91, 505-510.	0.9	48
66	Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. Functional Plant Biology, 1999, 26, 749.	1.1	47
67	Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures. Journal of Plant Physiology, 2013, 170, 822-827.	1.6	46
68	Photosynthetic heat tolerance of shade and sun leaves of three tropical tree species. Photosynthesis Research, 2019, 141, 119-130.	1.6	46
69	Low inactivation of D1 protein of photosystem II in young canopy leaves of Anacardium excelsum under high-light stress. Journal of Plant Physiology, 1997, 151, 286-292.	1.6	45
70	Crassulacean acid metabolism in the ZZ plant, <i>Zamioculcas zamiifolia</i> (Araceae). American Journal of Botany, 2007, 94, 1670-1676.	0.8	43
71	Lutein epoxide cycle, light harvesting and photoprotection in species of the tropical tree genus <i>Inga</i> . Plant, Cell and Environment, 2008, 31, 548-561.	2.8	43
72	High tolerance of tropical sapling growth and gas exchange to moderate warming. Functional Ecology, 2018, 32, 599-611.	1.7	43

#	Article	IF	CITATIONS
73	Drought-stress-induced up-regulation of CAM in seedlings of a tropical cactus, Opuntia elatior, operating predominantly in the C3 mode. Journal of Experimental Botany, 2011, 62, 4037-4042.	2.4	42
74	CAM photosynthesis: the acid test. New Phytologist, 2022, 233, 599-609.	3.5	42
75	Sudden Exposure to Solar UV-B Radiation Reduces Net CO2 Uptake and Photosystem I Efficiency in Shade-Acclimated Tropical Tree Seedlings. Plant Physiology, 2003, 131, 745-752.	2.3	41
76	Do mature shade leaves of tropical tree seedlings acclimate to high sunlight and UV radiation?. Functional Plant Biology, 2004, 31, 743.	1.1	41
77	Diversity, Phylogeny and Classification of Clusia. , 2007, , 95-116.		41
78	The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans. Photosynthesis Research, 2016, 129, 159-170.	1.6	41
79	Mineral Ion composition and occurrence of CAM-like diurnal malate fluctuations in plants of coastal and desert habitats of israel and the Sinai. Oecologia, 1976, 25, 125-143.	0.9	40
80	Carbon isotope composition of canopy leaves in a tropical forest in Panama throughout a seasonal cycle. Trees - Structure and Function, 2005, 19, 545-551.	0.9	40
81	Light-stimulated heat tolerance in leaves of two neotropical tree species, Ficus insipida and Calophyllum longifolium. Functional Plant Biology, 2015, 42, 42.	1.1	39
82	The Effects of Rising Temperature on the Ecophysiology of Tropical Forest Trees. Tree Physiology, 2016, , 385-412.	0.9	36
83	Evidence for the significance of crassulacean acid metabolism as an adaptive mechanism to water stress. Plant Science Letters, 1974, 3, 279-281.	1.9	35
84	Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Plant, Cell and Environment, 2021, 44, 2414-2427.	2.8	33
85	Carbon Assimilation Pathways in Mesembryanthemum nodiflorum L. under Natural Conditions. Zeitschrift Für Pflanzenphysiologie, 1978, 88, 153-162.	1.4	32
86	Photosynthetic characteristics of chloroplasts isolated fromMesembryanthemum crystallinum L., a halophilic plant capable of Crassulacean acid metabolism. Planta, 1983, 159, 66-76.	1.6	31
87	Light-Stimulated Burst of Carbon Dioxide Uptake following Nocturnal Acidification in the Crassulacean Acid Metabolism Plant Kalanchoë diagremontiana. Plant Physiology, 1982, 70, 1718-1722.	2.3	30
88	Day/night variations in turgor pressure in individual cells of Mesembryanthemum crystallinum L Oecologia, 1986, 69, 171-175.	0.9	30
89	Optional use of CAM photosynthesis in two C4 species, Portulaca cyclophylla and Portulaca digyna. Journal of Plant Physiology, 2017, 214, 91-96.	1.6	30
90	Altered Gene Regulatory Networks Are Associated With the Transition From C3 to Crassulacean Acid Metabolism in Erycina (Oncidiinae: Orchidaceae). Frontiers in Plant Science, 2018, 9, 2000.	1.7	30

#	Article	IF	CITATIONS
91	Large differences in leaf cuticle conductance and its temperature response among 24 tropical tree species from across a rainfall gradient. New Phytologist, 2021, 232, 1618-1631.	3.5	30
92	Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)?. Current Opinion in Plant Biology, 2016, 31, 109-117.	3.5	27
93	Marked growth response of communities of two tropical tree species to elevated CO2 when soil nutrient limitation is removed. Flora: Morphology, Distribution, Functional Ecology of Plants, 2001, 196, 47-58.	0.6	26
94	Research note: Large gene family of phosphoenolpyruvate carboxylase in the crassulacean acid metabolism plant Kalanchoe pinnata (Crassulaceae) characterised by partial cDNA sequence analysis. Functional Plant Biology, 2005, 32, 467.	1.1	26
95	Facultative crassulacean acid metabolism in a C3–C4 intermediate. Journal of Experimental Botany, 2019, 70, 6571-6579.	2.4	25
96	WHOLE-PLANT CONSEQUENCES OF CRASSULACEAN ACID METABOLISM FOR A TROPICAL FOREST UNDERSTORY PLANT. Ecology, 1999, 80, 1584-1593.	1.5	24
97	Growth irradiance effects on photosynthesis and growth in two coâ€occurring shadeâ€ŧolerant neotropical perennials of contrasting photosynthetic pathways. American Journal of Botany, 2005, 92, 1811-1819.	0.8	24
98	Oxygen isotope composition of CAM and C ₃ <i>Clusia</i> species: nonâ€steadyâ€state dynamics control leaf water ¹⁸ O enrichment in succulent leaves. Plant, Cell and Environment, 2008, 31, 1644-1662.	2.8	24
99	Facultative crassulacean acid metabolism (CAM) in four small C3 and C4 leaf-succulents. Australian Journal of Botany, 2017, 65, 103.	0.3	24
100	Facultative CAM photosynthesis (crassulacean acid metabolism) in four species of Calandrinia, ephemeral succulents of arid Australia. Photosynthesis Research, 2017, 134, 17-25.	1.6	22
101	Photosynthetic quantum efficiency in <scp>southâ€eastern</scp> Amazonian trees may be already affected by climate change. Plant, Cell and Environment, 2021, 44, 2428-2439.	2.8	22
102	Low-level CAM photosynthesis in a succulent-leaved member of the Urticaceae,. Functional Plant Biology, 2021, 48, 683-690.	1.1	21
103	Cryptic crassulacean acid metabolism (CAM) in Jatropha curcas. Functional Plant Biology, 2015, 42, 711.	1.1	20
104	Canopy CO2 exchange of two neotropical tree species exhibiting constitutive and facultative CAM photosynthesis, Clusia rosea and Clusia cylindrica. Journal of Experimental Botany, 2009, 60, 3167-3177.	2.4	19
105	Similar temperature dependence of photosynthetic parameters in sun and shade leaves of three tropical tree species. Tree Physiology, 2020, 40, 637-651.	1.4	19
106	Hydraulic traits of Neotropical canopy liana and tree species across a broad range of wood density: implications for predicting drought mortality with models. Tree Physiology, 2021, 41, 24-34.	1.4	17
107	Photosynthetic plasticity of a tropical tree species, <scp><i>Tabebuia rosea</i></scp> , in response to elevated temperature and [<scp>CO₂</scp>]. Plant, Cell and Environment, 2021, 44, 2347-2364.	2.8	17
108	Protection by light against heat stress in leaves of tropical crassulacean acid metabolism plants containing high acid levels. Functional Plant Biology, 2016, 43, 1061.	1.1	16

#	Article	IF	CITATIONS
109	Crassulacean acid metabolism (CAM) supersedes the turgor loss point (TLP) as an important adaptation across a precipitation gradient, in the genus. Functional Plant Biology, 2021, 48, 703-716.	1.1	16
110	Evolution of crassulacean acid metabolism (CAM) as an escape from ecological niche conservatism in Malagasy <i>Bulbophyllum</i> (Orchidaceae). New Phytologist, 2021, 231, 1236-1248.	3.5	16
111	Evolutionary history of CAM photosynthesis in Neotropical <i>Clusia</i> : insights from genomics, anatomy, physiology and climate. Botanical Journal of the Linnean Society, 2022, 199, 538-556.	0.8	16
112	Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation. Journal of Plant Physiology, 2007, 164, 1311-1322.	1.6	15
113	Nocturnal versus diurnal CO2 uptake: how flexible is Agave angustifolia?. Journal of Experimental Botany, 2014, 65, 3695-3703.	2.4	15
114	Operating at the very low end of the crassulacean acid metabolism spectrum: Sesuvium portulacastrum (Aizoaceae). Journal of Experimental Botany, 2019, 70, 6561-6570.	2.4	15
115	Occurrence of crassulacean acid metabolism in Colombian orchids determined by leaf carbon isotope ratios. Botanical Journal of the Linnean Society, 2020, 193, 431-477.	0.8	15
116	Limited photosynthetic plasticity in the leaf-succulent CAM plant Agave angustifolia grown at different temperatures. Functional Plant Biology, 2014, 41, 843.	1.1	14
117	14CO2 dark fixation in the halophytic species mesembryanthemum crystallinum. Biochimica Et Biophysica Acta - General Subjects, 1974, 343, 465-468.	1.1	12
118	Elevated CO2 enhances growth in the rain forest understory plant, Piper cordulatum, at extremely low light intensities. Flora: Morphology, Distribution, Functional Ecology of Plants, 1998, 193, 323-326.	0.6	11
119	<i>Karatophyllum bromelioides</i> L.D. Gómez revisited: A probable fossil CAM bromeliad. American Journal of Botany, 2011, 98, 1905-1908.	0.8	10
120	Experimenting with domestication: Understanding macro- and micro-phenotypes and developmental plasticity in teosinte in its ancestral pleistocene and early holocene environments. Journal of Archaeological Science, 2019, 108, 104970.	1.2	9
121	Does the C. Functional Plant Biology, 2021, 48, 655-665.	1.1	9
122	CAM photosynthesis in desert blooming. Functional Plant Biology, 2021, 48, 691-702.	1.1	8
123	Constitutive and facultative crassulacean acid metabolism (CAM) in Cuban oregano,. Functional Plant Biology, 2021, 48, 647-654.	1.1	6
124	Salinity responses of inland and coastal neotropical trees species. Plant Ecology, 2020, 221, 695-708.	0.7	5
125	Leaf water δ. Functional Plant Biology, 2021, 48, 732-742.	1.1	4
126	Diversity of CAM plant photosynthesis (crassulacean acid metabolism): a tribute to Barry Osmond. Functional Plant Biology, 2021, 48, iii.	1.1	2

#	Article	IF	CITATIONS
127	The Photosynthetic System in Tropical Plants Under High Irradiance and Temperature Stress. Progress in Botany Fortschritte Der Botanik, 2020, , 131-169.	0.1	0
128	Corrigendum to: Does the C4 plant Trianthema portulacastrum (Aizoaceae) exhibit weakly expressed crassulacean acid metabolism (CAM)?. Functional Plant Biology, 2021, 48, 1315.	1.1	0