Norman F Ruby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2608905/publications.pdf

Version: 2024-02-01

46 papers 2,490 citations

279798 23 h-index 206112 48 g-index

48 all docs

48 docs citations

48 times ranked

2252 citing authors

#	Article	IF	CITATIONS
1	Role of Melanopsin in Circadian Responses to Light. Science, 2002, 298, 2211-2213.	12.6	581
2	BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nature Neuroscience, 2006, 9, 1041-1049.	14.8	225
3	Hippocampal-dependent learning requires a functional circadian system. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15593-15598.	7.1	206
4	Melanopsin as a Sleep Modulator: Circadian Gating of the Direct Effects of Light on Sleep and Altered Sleep Homeostasis in Opn4â^'/â^' Mice. PLoS Biology, 2009, 7, e1000125.	5.6	186
5	Sleep and Circadian Rhythms in Mammalian Torpor. Annual Review of Physiology, 2004, 66, 275-289.	13.1	107
6	Circadian Rhythms in the Suprachiasmatic Nucleus are Temperature-Compensated and Phase-Shifted by Heat Pulses <i>In Vitro </i> . Journal of Neuroscience, 1999, 19, 8630-8636.	3.6	89
7	Dysrhythmia in the suprachiasmatic nucleus inhibits memory processing. Science, 2014, 346, 854-857.	12.6	86
8	Response of the Human Circadian System to Millisecond Flashes of Light. PLoS ONE, 2011, 6, e22078.	2.5	76
9	Sleep Deprivation Effects on Growth Factor Expression in Neonatal Rats: A Potential Role for BDNF in the Mediation of Delta Power. Journal of Neurophysiology, 2004, 91, 1586-1595.	1.8	75
10	The Suprachiasmatic Nucleus Is Essential for Circadian Body Temperature Rhythms in Hibernating Ground Squirrels. Journal of Neuroscience, 2002, 22, 357-364.	3.6	63
11	Millisecond Flashes of Light Phase Delay the Human Circadian Clock during Sleep. Journal of Biological Rhythms, 2014, 29, 370-376.	2.6	61
12	Spatial Memory and Long-Term Object Recognition Are Impaired by Circadian Arrhythmia and Restored by the GABAAAntagonist Pentylenetetrazole. PLoS ONE, 2013, 8, e72433.	2.5	59
13	Acute Light Exposure Suppresses Circadian Rhythms in Clock Gene Expression. Journal of Biological Rhythms, 2011, 26, 78-81.	2.6	54
14	Temperature Sensitivity of the Suprachiasmatic Nucleus of Ground Squirrels and Rats in vitro. Journal of Biological Rhythms, 1996, 11, 126-136.	2.6	52
15	Hibernation: When Good Clocks Go Cold. Journal of Biological Rhythms, 2003, 18, 275-286.	2.6	51
16	Homeostatic regulation of sleep in arrhythmic Siberian hamsters. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R104-R111.	1.8	44
17	Sleep deprivation elevates plasma corticosterone levels in neonatal rats. Neuroscience Letters, 2001, 315, 29-32.	2.1	42
18	Impaired leukocyte trafficking and skin inflammatory responses in hamsters lacking a functional circadian system. Brain, Behavior, and Immunity, 2013, 32, 94-104.	4.1	42

#	Article	IF	Citations
19	Suprachiasmatic nucleus: role in circannual body mass and hibernation rhythms of ground squirrels. Brain Research, 1998, 782, 63-72.	2.2	38
20	Development of Circadian Sleep Regulation in the Rat: A Longitudinal Study Under Constant Conditions. Sleep, 2017, 40, .	1.1	29
21	Glycogen content in the cerebral cortex increases with sleep loss in C57BL/6J mice. Neuroscience Letters, 2006, 402, 176-179.	2.1	27
22	Young children with Down syndrome show normal development of circadian rhythms, but poor sleep efficiency: a cross-sectional study across the first 60 months of life. Sleep Medicine, 2017, 33, 134-144.	1.6	27
23	Phenotypic Differences in Reentrainment Behavior and Sensitivity to Nighttime Light Pulses in Siberian Hamsters. Journal of Biological Rhythms, 2004, 19, 530-541.	2.6	24
24	Circadian Locomotor Rhythms Are Normal in Ts65Dn "Down Syndrome―Mice and Unaffected by Pentylenetetrazole. Journal of Biological Rhythms, 2010, 25, 63-66.	2.6	24
25	Phase Shift Magnitude and Direction Determine Whether Siberian Hamsters Reentrain to the Photocycle. Journal of Biological Rhythms, 1998, 13, 506-517.	2.6	21
26	Paraventricular nucleus ablation disrupts daily torpor in Siberian hamsters. Brain Research Bulletin, 1995, 37, 193-198.	3.0	20
27	Dietary obesity in exercising or cold-exposed syrian hamsters. Physiology and Behavior, 1984, 32, 85-90.	2.1	18
28	The aged suprachiasmatic nucleus is phase-shifted by cAMP in vitro. Brain Research, 1998, 779, 338-341.	2.2	15
29	Adaptive and pathological inhibition of neuroplasticity associated with circadian rhythms and sleep Behavioral Neuroscience, 2014, 128, 273-282.	1.2	13
30	Olfactory bulb removal lengthens the period of circannual rhythms and disrupts hibernation in golden-mantled ground squirrels. Brain Research, 1993, 608, 1-6.	2.2	12
31	Light induces c-fos and per1 expression in the suprachiasmatic nucleus of arrhythmic hamsters. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1381-R1386.	1.8	12
32	Suprachiasmatic lesions restore object recognition in down syndrome model mice. Neurobiology of Sleep and Circadian Rhythms, 2020, 8, 100049.	2.8	12
33	Suppression of Circadian Timing and Its Impact on the Hippocampus. Frontiers in Neuroscience, 2021, 15, 642376.	2.8	11
34	Disruption of circadian timing increases synaptic inhibition and reduces cholinergic responsiveness in the dentate gyrus. Hippocampus, 2021, 31, 422-434.	1.9	11
35	Constant darkness restores entrainment to phase-delayed Siberian hamsters. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1314-R1320.	1.8	9
36	Reentrainment Impairs Spatial Working Memory until Both Activity Onset and Offset Reentrain. Journal of Biological Rhythms, 2015, 30, 408-416.	2.6	9

#	Article	lF	CITATIONS
37	Rethinking Temperature Sensitivity of the Suprachiasmatic Nucleus. Journal of Biological Rhythms, 2011, 26, 368-370.	2.6	8
38	Scheduled feeding restores memory and modulates c-Fos expression in the suprachiasmatic nucleus and septohippocampal complex. Scientific Reports, 2017, 7, 6755.	3.3	8
39	Light Pulses Do Not Induce C-Fos or Per1 in the SCN of Hamsters That Fail to Reentrain to the Photocycle. Journal of Biological Rhythms, 2004, 19, 287-296.	2.6	7
40	Siberian hamsters that fail to reentrain to the photocycle have suppressed melatonin levels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R757-R762.	1.8	5
41	Co-infection of the Siberian hamster (Phodopus sungorus) with a novel Helicobacter sp. and Campylobacter sp Journal of Medical Microbiology, 2015, 64, 575-581.	1.8	5
42	Melatonin attenuates photic disruption of circadian rhythms in Siberian hamsters. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1540-R1549.	1.8	4
43	Loss of Melanopsin Photoreception and Antagonism of the Histamine H3 Receptor by Ciproxifan Inhibit Light-Induced Sleep in Mice. PLoS ONE, 2015, 10, e0128175.	2.5	4
44	Loss of Circadian Timing Disrupts Theta Episodes during Object Exploration. Clocks & Sleep, 2020, 2, 523-535.	2.0	3
45	Functional Interactions Between Sleep and Circadian Rhythms in Learning and Learning Disabilities. Handbook of Experimental Pharmacology, 2018, 253, 425-440.	1.8	2
46	Reversible Suppression of Fear Memory Recall by Transient Circadian Arrhythmia. Frontiers in Integrative Neuroscience, 2022, 16, .	2.1	1