Filippo Fraternali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2608628/publications.pdf

Version: 2024-02-01

68 papers

3,580 citations

34 h-index 59 g-index

70 all docs 70 docs citations

70 times ranked 2553 citing authors

#	Article	IF	CITATIONS
1	No need for dark matter: resolved kinematics of the ultra-diffuse galaxy AGC 114905. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3230-3242.	4.4	47
2	The impact of gas disc flaring on rotation curve decomposition and revisiting baryonic and dark matter relations for nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3329-3348.	4.4	17
3	Efficiency of thermal conduction in a magnetized circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1263-1278.	4.4	13
4	A massive stellar bulge in a regularly rotating galaxy 1.2 billion years after the Big Bang. Science, 2021, 371, 713-716.	12.6	53
5	The baryonic specific angular momentum of disc galaxies. Astronomy and Astrophysics, 2021, 647, A76.	5.1	38
6	VLA Imaging of H i-bearing Ultra-diffuse Galaxies from the ALFALFA Survey. Astrophysical Journal, 2021, 909, 19.	4.5	14
7	Fast rotating and low-turbulence discs at $\langle i \rangle z < i \rangle \hat{a} \in \hat{a} $ and $\hat{a} \in \hat{a} \in \hat{a}$ and low-turbulence discs at $\hat{a} \in \hat{a} \in \hat{a}$ and $\hat{a} \in \hat{a}$ and \hat{a}	5.1	31
8	A kinematic analysis of ionized extraplanar gas in the spiral galaxies NGC 3982 and NGC 4152. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3013-3028.	4.4	6
9	Voyage through the hidden physics of the cosmic web. Experimental Astronomy, 2021, 51, 1043-1079.	3.7	9
10	A tight angular-momentum plane for disc galaxies. Astronomy and Astrophysics, 2021, 651, L15.	5.1	27
11	Dynamical properties of $\langle i\rangle z \langle i\rangle$ $\hat{a}^{1}/44.5$ dusty star-forming galaxies and their connection with local early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3952-3984.	4.4	53
12	The role of the halo magnetic field on accretion through high-velocity clouds. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5756-5770.	4.4	9
13	Robust H i kinematics of gas-rich ultra-diffuse galaxies: hints of a weak-feedback formation scenario. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3636-3655.	4.4	56
14	Evidence for supernova feedback sustaining gas turbulence in nearby star-forming galaxies. Astronomy and Astrophysics, 2020, 641, A70.	5.1	40
15	Massive disc galaxies too dominated by dark matter in cosmological hydrodynamical simulations. Astronomy and Astrophysics, 2020, 640, A70.	5.1	20
16	The impact of the halo spin-concentration relation on disc scaling laws. Astronomy and Astrophysics, 2020, 644, A76.	5.1	6
17	The volumetric star formation law for nearby galaxies. Astronomy and Astrophysics, 2020, 644, A125.	5.1	22
18	HALOGAS: the properties of extraplanar HI in disc galaxies. Astronomy and Astrophysics, 2019, 631, A50.	5.1	40

#	Article	lF	CITATIONS
19	A multiwavelength study of a massive, active galaxy at z â ¹ / ₄ 2: coupling the kinematics of the ionized and molecular gas. Monthly Notices of the Royal Astronomical Society, 2019, 489, 681-698.	4.4	9
20	Off the Baryonic Tully–Fisher Relation: A Population of Baryon-dominated Ultra-diffuse Galaxies. Astrophysical Journal Letters, 2019, 883, L33.	8.3	76
21	Volumetric star formation laws of disc galaxies. Astronomy and Astrophysics, 2019, 622, A64.	5.1	73
22	Peak star formation efficiency and no missing baryons in massive spirals. Astronomy and Astrophysics, 2019, 626, A56.	5.1	69
23	Galaxy disc scaling relations: A tight linear galaxy–halo connection challenges abundance matching. Astronomy and Astrophysics, 2019, 629, A59.	5.1	34
24	Cool circumgalactic gas of passive galaxies from cosmological inflow. Astronomy and Astrophysics, 2019, 625, A11.	5.1	23
25	Angular Momentum Accretion onto Disc Galaxies. Proceedings of the International Astronomical Union, 2018, 14, 228-232.	0.0	0
26	A novel 3D technique to study the kinematics of lensed galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5606-5629.	4.4	21
27	SO galaxies are faded spirals: clues from their angular momentum content. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2137-2167.	4.4	36
28	Neutral versus ionized gas kinematics at z $3\% f$ 2.6: the AGN-host starburst galaxy PKS $3 \in \infty$ 0529-549. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5440-5447.	4.4	21
29	The angular momentum-mass relation: a fundamental law from dwarf irregulars to massive spirals. Astronomy and Astrophysics, 2018, 612, L6.	5.1	68
30	Galaxy spin as a formation probe: the stellar-to-halo specific angular momentum relation. Monthly Notices of the Royal Astronomical Society, 2018, 475, 232-243.	4.4	41
31	Starburst to Quiescent from HST/ALMA: Stars and Dust Unveil Minor Mergers in Submillimeter Galaxies at zÂâ^1/4Â4.5. Astrophysical Journal, 2018, 856, 121.	4.5	65
32	HALOGAS Observations of NGC 4559: Anomalous and Extraplanar H i and its Relation to Star Formation. Astrophysical Journal, 2017, 839, 118.	4.5	11
33	Prolate rotation and metallicity gradient in the transforming dwarf galaxy Phoenix. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2006-2023.	4.4	51
34	Gas Accretion via Condensation and Fountains. Astrophysics and Space Science Library, 2017, , 323-353.	2.7	66
35	Accretion, radial flows and abundance gradients in spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2308-2322.	4.4	54
36	The effect of stellar feedback on a Milky Way-like galaxy and its gaseous halo. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4223-4237.	4.4	26

#	Article	IF	CITATIONS
37	H ii REGIONS WITHIN A COMPACT HIGH VELOCITY CLOUD. A NEARLY STARLESS DWARF GALAXY?. Astrophysical Journal Letters, 2015, 800, L15.	8.3	20
38	Dynamics of starbursting dwarf galaxies. Astronomy and Astrophysics, 2014, 566, A71.	5.1	98
39	Evolution of dwarf galaxies: a dynamical perspective. Astronomy and Astrophysics, 2014, 563, A27.	5.1	41
40	The triggering of starbursts in low-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1694-1712.	4.4	78
41	A scaling relation for disc galaxies: circular-velocity gradient <i>versus</i> brightness. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 433, L30-L34.	3.3	47
42	On the origin of the warm–hot absorbers in the Milky Way's halo. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1634-1647.	4.4	33
43	Unveiling the corona of the Milky Way via ram-pressure stripping of dwarf satellites. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2749-2763.	4.4	106
44	IONIZED ABSORBERS AS EVIDENCE FOR SUPERNOVA-DRIVEN COOLING OF THE LOWER GALACTIC CORONA. Astrophysical Journal Letters, 2013, 764, L21.	8.3	44
45	How can star formation be sustained?. Proceedings of the International Astronomical Union, 2013, 9, 228-239.	0.0	9
46	Modelling the gas kinematics in disk galaxies. EAS Publications Series, 2012, 56, 355-362.	0.3	2
47	Estimating gas accretion in disc galaxies using the Kennicutt-Schmidt law. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2166-2177.	4.4	54
48	Supernova-driven gas accretion in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1107-1120.	4.4	100
49	Galactic fountains and the rotation of disc-galaxy coronae. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1534-1542.	4.4	91
50	Gas Circulation and Galaxy Evolution. , 2010, , .		2
51	The WSRT HALOGAS Survey., 2010, , .		0
52	Stationary models for the extraplanar gas in disc galaxies. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2451-2462.	4.4	16
53	The mode of gas accretion on to star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	68
54	Do high-velocity clouds form by thermal instability?. Monthly Notices of the Royal Astronomical Society, 2009, 397, 1804-1815.	4.4	97

#	Article	IF	CITATIONS
55	Cold gas accretion in galaxies. Astronomy and Astrophysics Review, 2008, 15, 189-223.	25.5	416
56	Accretion of gas on to nearby spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 386, 935-944.	4.4	187
57	New evidence for halo gas accretion onto disk galaxies. Proceedings of the International Astronomical Union, 2008, 4, 255-262.	0.0	0
58	The Cold Gaseous Halo of NGC 891. Astronomical Journal, 2007, 134, 1019-1036.	4.7	250
59	Gaseous haloes: Linking galaxies to the IGM. New Astronomy Reviews, 2007, 51, 95-98.	12.8	18
60	Gaseous Haloes: Linking Galaxies to the IGM. Proceedings of the International Astronomical Union, 2006, 2, 297-299.	0.0	0
61	A dynamical model for the extraplanar gas in spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2006, 366, 449-466.	4.4	160
62	High Velocity Gas in the Halos of Spiral Galaxies. Symposium - International Astronomical Union, 2004, 217, 136-141.	0.1	3
63	Holes and High Velocity H I in NGC 6946. Symposium - International Astronomical Union, 2004, 217, 142-143.	0.1	2
64	The HI halo of spiral galaxies. Astrophysics and Space Science, 2004, 289, 377-380.	1.4	3
65	Deep H [CSC]i[/CSC] Survey of the Spiral Galaxy NGC 2403. Astronomical Journal, 2002, 123, 3124-3140.	4.7	190
66	Diffuse Xâ∈Ray Emission from the Spiral Galaxy NGC 2403 Discovered withChandra. Astrophysical Journal, 2002, 578, 109-113.	4.5	36
67	A New, Kinematically Anomalous H [CSC]i[/CSC] Component in the Spiral Galaxy NGC 2403. Astrophysical Journal, 2001, 562, L47-L50.	4.5	96
68	Clouds, Streams and Bridges. Redrawing the blueprint of the Magellanic System with <i>Gaia</i> DR1. Monthly Notices of the Royal Astronomical Society, 0, , stw3357.	4.4	68