Elena Angulo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/260716/publications.pdf

Version: 2024-02-01

68 papers

5,007 citations

172457
29
h-index

52 g-index

75 all docs

75 docs citations

75 times ranked 5504 citing authors

#	Article	IF	CITATIONS
1	Surprisingly high economic costs of biological invasions in protected areas. Biological Invasions, 2022, 24, 1995-2016.	2.4	16
2	The magnitude, diversity, and distribution of the economic costs of invasive terrestrial invertebrates worldwide. Science of the Total Environment, 2022, 835, 155391.	8.0	21
3	Economic costs of invasive alien ants worldwide. Biological Invasions, 2022, 24, 2041-2060.	2.4	42
4	Temperature or competition: Which has more influence on Mediterranean ant communities?. PLoS ONE, 2022, 17, e0267547.	2.5	0
5	Connecting the data landscape of longâ€term ecological studies: The SPIâ€Birds data hub. Journal of Animal Ecology, 2021, 90, 2147-2160.	2.8	25
6	Behavioral responses to numerical differences when two invasive ants meet: the case of Lasius neglectus and Linepithema humile. Biological Invasions, 2021, 23, 935-953.	2.4	7
7	Effects of the Argentine ant venom on terrestrial amphibians. Conservation Biology, 2021, 35, 216-226.	4.7	12
8	Introduced ant species occupy empty climatic niches in Europe. Scientific Reports, 2021, 11, 3280.	3.3	2
9	Non-English languages enrich scientific knowledge: The example of economic costs of biological invasions. Science of the Total Environment, 2021, 775, 144441.	8.0	108
10	Global economic costs of aquatic invasive alien species. Science of the Total Environment, 2021, 775, 145238.	8.0	183
11	Environmental and genetic constraints on cuticular hydrocarbon composition and nestmate recognition in ants. Animal Behaviour, 2020, 159, 105-119.	1.9	6
12	Does social thermal regulation constrain individual thermal tolerance in an ant species?. Journal of Animal Ecology, 2020, 89, 2063-2076.	2.8	19
13	Breeding consequences for a songbird nesting in Argentine ant' invaded land. Biological Invasions, 2020, 22, 2883-2898.	2.4	6
14	The Native Ant Lasius niger Can Limit the Access to Resources of the Invasive Argentine Ant. Animals, 2020, 10, 2451.	2.3	8
15	Humans and scavenging raptors facilitate Argentine ant invasion in Do $ ilde{A}$ \pm ana National Park: no counter-effect of biotic resistance. Biological Invasions, 2019, 21, 2221-2232.	2.4	2
16	Review: Allee effects in social species. Journal of Animal Ecology, 2018, 87, 47-58.	2.8	68
17	Dominance–diversity relationships in ant communities differ with invasion. Global Change Biology, 2018, 24, 4614-4625.	9.5	39
18	A global database of ant species abundances. Ecology, 2017, 98, 883-884.	3.2	37

#	Article	IF	CITATIONS
19	Native predators living in invaded areas: responses of terrestrial amphibian species to an Argentine ant invasion. Oecologia, 2017, 185, 95-106.	2.0	16
20	Anthropogenic impacts in protected areas: assessing the efficiency of conservation efforts using Mediterranean ant communities. Peerl, 2016, 4, e2773.	2.0	19
21	Nutritional versus genetic correlates of caste differentiation in a desert ant. Ecological Entomology, 2016, 41, 660-667.	2.2	9
22	Early developmental processes limit socially mediated phenotypic plasticity in an ant. Behavioral Ecology and Sociobiology, 2016, 70, 285-291.	1.4	10
23	Climate mediates the effects of disturbance on ant assemblage structure. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150418.	2.6	58
24	Regulation of worker egg laying by larvae in a fission-performing ant. Animal Behaviour, 2015, 106, 149-156.	1.9	19
25	Do social groups prevent Allee effect related extinctions?: The case of wild dogs. Frontiers in Zoology, 2013, 10, 11.	2.0	27
26	Plastic changes in tadpole trophic ecology revealed by stable isotope analysis. Oecologia, 2013, 173, 95-105.	2.0	33
27	Ant community structure on a small Pacific island: only one native species living with the invaders. Biological Invasions, 2012, 14, 323-339.	2.4	25
28	Seabird Modulations of Isotopic Nitrogen on Islands. PLoS ONE, 2012, 7, e39125.	2.5	52
29	Scavenging in Mediterranean ecosystems: effect of the invasive Argentine ant. Biological Invasions, 2011, 13, 1183-1194.	2.4	22
30	Rarity Value and Species Extinction. , 2011, , 92-102.		0
31	Value of Rare Species in Ecotourism. , 2011, , 83-91.		0
32	Trophic experiments to estimate isotope discrimination factors. Journal of Applied Ecology, 2010, 47, 948-954.	4.0	35
33	Rare Species Are Valued Big Time. PLoS ONE, 2009, 4, e5215.	2.5	46
34	Fatal attraction: rare species in the spotlight. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1331-1337.	2.6	52
35	Avoiding surprise effects on Surprise Island: alien species control in a multitrophic level perspective. Biological Invasions, 2009, 11, 1689-1703.	2.4	65
36	Individual and collective foraging decisions: a field study of worker recruitment in the gypsy ant Aphaenogaster senilis. Behavioral Ecology and Sociobiology, 2009, 63, 551-562.	1.4	60

#	Article	IF	Citations
37	Variation in discrimination factors (î" ¹⁵ N and î" ¹³ C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology, 2009, 46, 443-453.	4.0	1,159
38	When biotech crosses borders. Nature Biotechnology, 2008, 26, 277-282.	17.5	11
39	International law should govern release of GM mosquitoes. Nature, 2008, 454, 158-158.	27.8	8
40	Discrimination factors (î"15N and î"13C) in an omnivorous consumer: effect of diet isotopic ratio. Functional Ecology, 2008, 22, 255-263.	3.6	161
41	Dietary shift of an invasive predator: rats, seabirds and sea turtles. Journal of Applied Ecology, 2008, 45, 428-437.	4.0	155
42	Caution on isotopic model use for analyses of consumer diet. Canadian Journal of Zoology, 2008, 86, 438-445.	1.0	110
43	Isotope Analysis Reveals Foraging Area Dichotomy for Atlantic Leatherback Turtles. PLoS ONE, 2008, 3, e1845.	2.5	67
44	Towards a unique and transmissible vaccine against myxomatosis and rabbit haemorrhagic disease for rabbit populations. Wildlife Research, 2007, 34, 567.	1.4	34
45	Multiple Allee effects and population management. Trends in Ecology and Evolution, 2007, 22, 185-191.	8.7	497
46	Rabbits as a keystone species in southern Europe. Biological Conservation, 2007, 137, 149-156.	4.1	156
47	Can bans stimulate wildlife trade?. Nature, 2007, 447, 529-530.	27.8	127
48	Double Allee Effects and Extinction in the Island Fox. Conservation Biology, 2007, 21, 1082-1091.	4.7	113
49	Rarity Value and Species Extinction: The Anthropogenic Allee Effect. PLoS Biology, 2006, 4, e415.	5.6	432
50	Conservation of European wild rabbit populations when hunting is age and sex selective. Biological Conservation, 2005, 121, 623-634.	4.1	26
51	QUARANTINE LENGTH AND SURVIVAL OF TRANSLOCATED EUROPEAN WILD RABBITS. Journal of Wildlife Management, 2005, 69, 1063-1072.	1.8	32
52	Habitat factors related to wild rabbit conservation in an agricultural landscape. Landscape Ecology, 2004, 19, 533-544.	4.2	86
53	Modelling hunting strategies for the conservation of wild rabbit populations. Biological Conservation, 2004, 115, 291-301.	4.1	74
54	First synthesize new viruses then regulate their release? The case of the wild rabbit. Molecular Ecology, 2002, 11, 2703-2709.	3.9	48

#	Article	IF	Citations
55	When DNA research menaces diversity. Nature, 2001, 410, 739-739.	27.8	11
56	Economic impact of invasive alien species in Argentina: a first national synthesis. NeoBiota, 0, 67, 329-348.	1.0	19
57	Economic costs of invasive alien species in Mexico. NeoBiota, 0, 67, 459-483.	1.0	19
58	Economic costs of biological invasions in Asia. NeoBiota, 0, 67, 53-78.	1.0	42
59	First synthesis of the economic costs of biological invasions in Japan. NeoBiota, 0, 67, 79-101.	1.0	22
60	Economic costs of biological invasions in Ecuador: the importance of the Galapagos Islands. NeoBiota, 0, 67, 375-400.	1.0	15
61	The economic costs of biological invasions in Africa: a growing but neglected threat?. NeoBiota, 0, 67, 11-51.	1.0	40
62	Economic costs of invasive alien species in the Mediterranean basin. NeoBiota, 0, 67, 427-458.	1.0	44
63	Economic costs of invasive alien species in Spain. NeoBiota, 0, 67, 267-297.	1.0	31
64	Economic costs of biological invasions within North America. NeoBiota, 0, 67, 485-510.	1.0	55
65	Economic costs of biological invasions in terrestrial ecosystems in Russia. NeoBiota, 0, 67, 103-130.	1.0	18
66	Biological invasions in France: Alarming costs and even more alarming knowledge gaps. NeoBiota, 0, 67, 191-224.	1.0	36
67	The economic costs of biological invasions in Central and South America: a first regional assessment. NeoBiota, 0, 67, 401-426.	1.0	40
68	Economic costs of invasive alien species across Europe. NeoBiota, 0, 67, 153-190.	1.0	148