## Shannon J Turley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2607144/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554, 544-548.                                                                      | 27.8 | 3,359     |
| 2  | Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nature Immunology, 2012, 13, 1118-1128.              | 14.5 | 1,731     |
| 3  | The Immunological Genome Project: networks of gene expression in immune cells. Nature Immunology, 2008, 9, 1091-1094.                                                                       | 14.5 | 1,576     |
| 4  | Immunological hallmarks of stromal cells in the tumour microenvironment. Nature Reviews<br>Immunology, 2015, 15, 669-682.                                                                   | 22.7 | 850       |
| 5  | Deciphering the transcriptional network of the dendritic cell lineage. Nature Immunology, 2012, 13, 888-899.                                                                                | 14.5 | 688       |
| 6  | Single-Cell RNA Sequencing Reveals Stromal Evolution into LRRC15+ Myofibroblasts as a Determinant of Patient Response to Cancer Immunotherapy. Cancer Discovery, 2020, 10, 232-253.         | 9.4  | 466       |
| 7  | Cross-tissue organization of the fibroblast lineage. Nature, 2021, 593, 575-579.                                                                                                            | 27.8 | 463       |
| 8  | Th17 Cells Induce Ectopic Lymphoid Follicles in Central Nervous System Tissue Inflammation. Immunity, 2011, 35, 986-996.                                                                    | 14.3 | 421       |
| 9  | TGFÎ <sup>2</sup> biology in cancer progression and immunotherapy. Nature Reviews Clinical Oncology, 2021, 18,<br>9-34.                                                                     | 27.6 | 420       |
| 10 | Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological<br>hallmarks. Nature Immunology, 2012, 13, 499-510.                                         | 14.5 | 416       |
| 11 | Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nature<br>Immunology, 2007, 8, 181-190.                                                       | 14.5 | 315       |
| 12 | Physiological β Cell Death Triggers Priming of Self-reactive T Cells by Dendritic Cells in a Type-1<br>Diabetes Model. Journal of Experimental Medicine, 2003, 198, 1527-1537.              | 8.5  | 314       |
| 13 | Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state<br>and inflammatory conditions. Journal of Experimental Medicine, 2010, 207, 689-697. | 8.5  | 292       |
| 14 | Podoplanin: emerging functions in development, the immune system, and cancer. Frontiers in<br>Immunology, 2012, 3, 283.                                                                     | 4.8  | 288       |
| 15 | Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature, 2014, 514, 498-502.                                                                        | 27.8 | 264       |
| 16 | Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T<br>cell pool in lymph nodes. Nature Immunology, 2011, 12, 1096-1104.                     | 14.5 | 260       |
| 17 | Podoplanin-Rich Stromal Networks Induce Dendritic Cell Motility via Activation of the C-type Lectin Receptor CLEC-2. Immunity, 2012, 37, 276-289.                                           | 14.3 | 256       |
| 18 | B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nature<br>Immunology, 2014, 15, 973-981.                                                             | 14.5 | 237       |

SHANNON J TURLEY

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nature Immunology, 2010, 11, 427-434.                       | 14.5 | 235       |
| 20 | The CLEC-2–podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nature Immunology, 2015, 16, 75-84.                          | 14.5 | 233       |
| 21 | Fibroblasts as immune regulators in infection, inflammation and cancer. Nature Reviews Immunology, 2021, 21, 704-717.                                                                | 22.7 | 229       |
| 22 | Reproducible Isolation of Lymph Node Stromal Cells Reveals Site-Dependent Differences in Fibroblastic<br>Reticular Cells. Frontiers in Immunology, 2011, 2, 35.                      | 4.8  | 214       |
| 23 | Distinct Mesenchymal Cell Populations Generate the Essential Intestinal BMP Signaling Gradient. Cell Stem Cell, 2020, 26, 391-402.e5.                                                | 11.1 | 211       |
| 24 | Lymph node stromal cells: cartographers of the immune system. Nature Immunology, 2020, 21, 369-380.                                                                                  | 14.5 | 198       |
| 25 | Integration of Th17- and Lymphotoxin-Derived Signals Initiates Meningeal-Resident Stromal Cell<br>Remodeling to Propagate Neuroinflammation. Immunity, 2015, 43, 1160-1173.          | 14.3 | 176       |
| 26 | Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell, 2021, 39, 928-944.e6.                             | 16.8 | 158       |
| 27 | Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory TÂcells in pancreatic cancer. Cancer Cell, 2022, 40, 656-673.e7.            | 16.8 | 155       |
| 28 | Endocrine self and gut non-self intersect in the pancreatic lymph nodes. Proceedings of the National<br>Academy of Sciences of the United States of America, 2005, 102, 17729-17733. | 7.1  | 152       |
| 29 | The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs.<br>Nature Reviews Immunology, 2010, 10, 813-825.                                   | 22.7 | 151       |
| 30 | Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity, 2021, 54, 903-915.                                                                          | 14.3 | 147       |
| 31 | DC-SIGN+ Macrophages Control the Induction of Transplantation Tolerance. Immunity, 2015, 42, 1143-1158.                                                                              | 14.3 | 144       |
| 32 | Stromal infrastructure of the lymph node and coordination of immunity. Trends in Immunology, 2015, 36, 30-39.                                                                        | 6.8  | 143       |
| 33 | Deaf1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes. Nature Immunology, 2009, 10, 1026-1033.     | 14.5 | 134       |
| 34 | Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunological<br>Reviews, 2013, 251, 160-176.                                                    | 6.0  | 133       |
| 35 | FAP Delineates Heterogeneous and Functionally Divergent Stromal Cells in Immune-Excluded Breast<br>Tumors. Cancer Immunology Research, 2018, 6, 1472-1485.                           | 3.4  | 131       |
| 36 | Mutations in G protein Î <sup>2</sup> subunits promote transformation and kinase inhibitor resistance. Nature<br>Medicine, 2015, 21, 71-75.                                          | 30.7 | 106       |

SHANNON J TURLEY

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A Stromal Niche Defined by Expression of the Transcription Factor WT1 Mediates Programming and<br>Homeostasis of Cavity-Resident Macrophages. Immunity, 2019, 51, 119-130.e5.                | 14.3 | 105       |
| 38 | Lymph node stroma broaden the peripheral tolerance paradigm. Trends in Immunology, 2011, 32, 12-18.                                                                                          | 6.8  | 102       |
| 39 | Fibroblastic Reticular Cells: Organization and Regulation of the T Lymphocyte Life Cycle. Journal of<br>Immunology, 2015, 194, 1389-1394.                                                    | 0.8  | 99        |
| 40 | Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer. Nature Communications, 2020, 11, 5583.                         | 12.8 | 99        |
| 41 | Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph<br>Node Functionality. PLoS Biology, 2016, 14, e1002515.                                    | 5.6  | 96        |
| 42 | Tumor Elastography and Its Association with Collagen and the Tumor Microenvironment. Clinical Cancer Research, 2018, 24, 4455-4467.                                                          | 7.0  | 88        |
| 43 | A short field guide to fibroblast function in immunity. Seminars in Immunology, 2018, 35, 48-58.                                                                                             | 5.6  | 87        |
| 44 | The human lymph node microenvironment unilaterally regulates T-cell activation and differentiation.<br>PLoS Biology, 2018, 16, e2005046.                                                     | 5.6  | 78        |
| 45 | Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine. Journal of Experimental Medicine, 2014, 211, 1611-1621.    | 8.5  | 76        |
| 46 | Testosterone is an endogenous regulator of BAFF and splenic B cell number. Nature Communications, 2018, 9, 2067.                                                                             | 12.8 | 66        |
| 47 | The Immunoglobulin Superfamily Receptome Defines Cancer-Relevant Networks Associated with Clinical Outcome. Cell, 2020, 182, 329-344.e19.                                                    | 28.9 | 66        |
| 48 | The Tumor Microenvironment Shapes Lineage, Transcriptional, and Functional Diversity of Infiltrating<br>Myeloid Cells. Cancer Immunology Research, 2014, 2, 655-667.                         | 3.4  | 63        |
| 49 | A Potent Pan-TGFÎ <sup>2</sup> Neutralizing Monoclonal Antibody Elicits Cardiovascular Toxicity in Mice and Cynomolgus Monkeys. Toxicological Sciences, 2020, 175, 24-34.                    | 3.1  | 62        |
| 50 | Dendritic cells: inciting and inhibiting autoimmunity. Current Opinion in Immunology, 2002, 14, 765-770.                                                                                     | 5.5  | 61        |
| 51 | IgE/FcεRI-Mediated Antigen Cross-Presentation by Dendritic Cells Enhances Anti-Tumor Immune<br>Responses. Cell Reports, 2015, 10, 1487-1495.                                                 | 6.4  | 61        |
| 52 | Macrophage Death following Influenza Vaccination Initiates the Inflammatory Response that<br>Promotes Dendritic Cell Function in the Draining Lymph Node. Cell Reports, 2017, 18, 2427-2440. | 6.4  | 61        |
| 53 | ImmGen at 15. Nature Immunology, 2020, 21, 700-703.                                                                                                                                          | 14.5 | 55        |
| 54 | Fibroblastic reticular cells enhance T cell metabolism and survival via epigenetic remodeling. Nature<br>Immunology, 2019, 20, 1668-1680.                                                    | 14.5 | 53        |

SHANNON J TURLEY

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A Platform for Extracellular Interactome Discovery Identifies Novel Functional Binding Partners for the Immune Receptors B7-H3/CD276 and PVR/CD155. Molecular and Cellular Proteomics, 2019, 18, 2310-2323. | 3.8  | 51        |
| 56 | Gremlin 1+ fibroblastic niche maintains dendritic cell homeostasis in lymphoid tissues. Nature<br>Immunology, 2021, 22, 571-585.                                                                            | 14.5 | 44        |
| 57 | Lymph node fibroblastic reticular cell transplants show robust therapeutic efficacy in high-mortality<br>murine sepsis. Science Translational Medicine, 2014, 6, 249ra109.                                  | 12.4 | 39        |
| 58 | Mechanosensing by Peyer's patch stroma regulates lymphocyte migration and mucosal antibody responses. Nature Immunology, 2019, 20, 1506-1516.                                                               | 14.5 | 37        |
| 59 | Homeostatic functions of monocytes and interstitial lung macrophages are regulated via collagen domain-binding receptor LAIR1. Immunity, 2021, 54, 1511-1526.e8.                                            | 14.3 | 35        |
| 60 | IL-1R1–dependent signaling coordinates epithelial regeneration in response to intestinal damage.<br>Science Immunology, 2021, 6, .                                                                          | 11.9 | 31        |
| 61 | Fibroblastâ€derived ILâ€33 is dispensable for lymph node homeostasis but critical for CD8 Tâ€cell responses<br>to acute and chronic viral infection. European Journal of Immunology, 2021, 51, 76-90.       | 2.9  | 24        |
| 62 | A bird's eye view of fibroblast heterogeneity: A panâ€disease, panâ€cancer perspective. Immunological<br>Reviews, 2021, 302, 299-320.                                                                       | 6.0  | 23        |
| 63 | Hepatic immune regulation by stromal cells. Current Opinion in Immunology, 2015, 32, 1-6.                                                                                                                   | 5.5  | 22        |
| 64 | The neutrophil protein CD177 is a novel PDPN receptor that regulates human cancer-associated fibroblast physiology. PLoS ONE, 2021, 16, e0260800.                                                           | 2.5  | 9         |
| 65 | Neutrophils Follow Stromal Omens to Limit Peritoneal Inflammation. Immunity, 2020, 52, 578-580.                                                                                                             | 14.3 | 5         |
| 66 | Chemokine 'grooming' by cLECs directs DC migration. Nature Immunology, 2014, 15, 595-596.                                                                                                                   | 14.5 | 4         |
| 67 | Who am I? (reâ€)Defining fibroblast identity and immunological function in the age of bioinformatics.<br>Immunological Reviews, 2021, 302, 5-9.                                                             | 6.0  | 3         |
| 68 | Editorial overview: Functional interaction of lymphocytes. Current Opinion in Immunology, 2020, 64, v-vi.                                                                                                   | 5.5  | 0         |
| 69 | Antigen presentation by lymph node stroma: Potential for tolerogenic immunotherapy. FASEB Journal, 2008, 22, 474-474.                                                                                       | 0.5  | 0         |