Simon R Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/26056/publications.pdf

Version: 2024-02-01

1040056 1125743 14 385 9 13 citations h-index g-index papers 14 14 14 598 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PE/PPE proteins mediate nutrient transport across the outer membrane of <i>Mycobacterium tuberculosis</i> . Science, 2020, 367, 1147-1151.	12.6	110
2	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	3.8	77
3	2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and <i>Mycobacterium tuberculosis</i> : Structure–Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization. ACS Infectious Diseases, 2018, 4, 954-969.	3.8	49
4	Identification of Morpholino Thiophenes as Novel <i>Mycobacterium tuberculosis</i> Inhibitors, Targeting QcrB. Journal of Medicinal Chemistry, 2018, 61, 6592-6608.	6.4	43
5	Synergistic Inhibition of ErbB Signaling by Combined Treatment with Seliciclib and ErbB-Targeting Agents. Clinical Cancer Research, 2008, 14, 4326-4335.	7.0	28
6	Spirocycle MmpL3 Inhibitors with Improved hERG and Cytotoxicity Profiles as Inhibitors of <i>Mycobacterium tuberculosis</i>	3.5	19
7	Optimization of TAM16, a Benzofuran That Inhibits the Thioesterase Activity of Pks13; Evaluation toward a Preclinical Candidate for a Novel Antituberculosis Clinical Target. Journal of Medicinal Chemistry, 2022, 65, 409-423.	6.4	15
8	Screening of a Novel Fragment Library with Functional Complexity against <i>Mycobacterium tuberculosis</i> InhA. ChemMedChem, 2018, 13, 672-677.	3.2	10
9	Inhibition of CorA-Dependent Magnesium Homeostasis Is Cidal in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	9
10	Antitubercular 2-Pyrazolylpyrimidinones: Structure–Activity Relationship and Mode-of-Action Studies. Journal of Medicinal Chemistry, 2021, 64, 719-740.	6.4	9
11	Inhibiting Mycobacterium tuberculosis CoaBC by targeting an allosteric site. Nature Communications, 2021, 12, 143.	12.8	8
12	Resistance of Mycobacterium tuberculosis to indole 4-carboxamides occurs through alterations in drug metabolism and tryptophan biosynthesis. Cell Chemical Biology, 2021, 28, 1180-1191.e20.	5.2	5
13	Targeting <i>Mycobacterium tuberculosis</i> CoaBC through Chemical Inhibition of 4′-Phosphopantothenoyl- <scp>I</scp> -cysteine Synthetase (CoaB) Activity. ACS Infectious Diseases, 2021, 7, 1666-1679.	3.8	3
14	Collateral-resistance to estrogen and HER-activated growth is associated with modified AKT, ERα, and cell-cycle signaling in a breast cancer model. Exploration of Targeted Anti-tumor Therapy, 2022, 3, 97-116.	0.8	0