
Felipe Cortés Ledesma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2605386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature, 2008, 455, 689-692.	27.8	402
2	A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature, 2009, 461, 674-678.	27.8	364
3	Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nature Cell Biology, 2006, 8, 1032-1034.	10.3	170
4	TDP2–Dependent Non-Homologous End-Joining Protects against Topoisomerase II–Induced DNA Breaks and Genome Instability in Cells and In Vivo. PLoS Genetics, 2013, 9, e1003226.	3.5	139
5	TDP2/TTRAP Is the Major 5â€ ² -Tyrosyl DNA Phosphodiesterase Activity in Vertebrate Cells and Is Critical for Cellular Resistance to Topoisomerase II-induced DNA Damage. Journal of Biological Chemistry, 2011, 286, 403-409.	3.4	137
6	Doubleâ€strand breaks arising by replication through a nick are repaired by cohesinâ€dependent sister•hromatid exchange. EMBO Reports, 2006, 7, 919-926.	4.5	132
7	ZATT (ZNF451)–mediated resolution of topoisomerase 2 DNA-protein cross-links. Science, 2017, 357, 1412-1416.	12.6	127
8	TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nature Genetics, 2014, 46, 516-521.	21.4	122
9	Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nature Communications, 2017, 8, 14758.	12.8	118
10	Non-redundant Functions of ATM and DNA-PKcs in Response to DNA Double-Strand Breaks. Cell Reports, 2015, 13, 1598-1609.	6.4	104
11	The absence of the yeast chromatin assembly factor Asf1 increases genomic instability and sister chromatid exchange. EMBO Reports, 2004, 5, 497-502.	4.5	100
12	Mitotic recombination in Saccharomyces cerevisiae. Current Genetics, 2003, 42, 185-198.	1.7	96
13	ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nature Communications, 2014, 5, 3347.	12.8	95
14	Equal Sister Chromatid Exchange Is a Major Mechanism of Double-Strand Break Repair in Yeast. Molecular Cell, 2003, 11, 1661-1671.	9.7	90
15	APLF (C2orf13) Is a Novel Component of Poly(ADP-Ribose) Signaling in Mammalian Cells. Molecular and Cellular Biology, 2008, 28, 4620-4628.	2.3	85
16	Does Tyrosyl DNA Phosphodiesterase-2 Play a Role in Hepatitis B Virus Genome Repair?. PLoS ONE, 2015, 10, e0128401.	2.5	69
17	The Dot1 Histone Methyltransferase and the Rad9 Checkpoint Adaptor Contribute to Cohesin-Dependent Double-Strand Break Repair by Sister Chromatid Recombination in <i>Saccharomyces cerevisiae</i> . Genetics, 2009, 182, 437-446.	2.9	57
18	Different genetic requirements for repair of replication-born double-strand breaks by sister-chromatid recombination and break-induced replication. Nucleic Acids Research, 2007, 35, 6560-6570.	14.5	22

Felipe Cortés Ledesma

#	Article	IF	CITATIONS
19	CSE4 peptide suppresses oxidative and telomere deficiencies in ataxia telangiectasia patient cells. Cell Death and Differentiation, 2019, 26, 1998-2014.	11.2	22
20	A Novel Yeast Mutation, rad52-L89F, Causes a Specific Defect in Rad51-Independent Recombination That Correlates With a Reduced Ability of Rad52-L89F to Interact With Rad59. Genetics, 2004, 168, 553-557.	2.9	21
21	Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination. Nucleic Acids Research, 2013, 41, 1669-1683.	14.5	14
22	Endogenous topoisomerase II-mediated DNA breaks drive thymic cancer predisposition linked to ATM deficiency. Nature Communications, 2020, 11, 910.	12.8	14
23	Divergent Requirement for a DNA Repair Enzyme during Enterovirus Infections. MBio, 2016, 7, e01931-15.	4.1	13
24	Regulation of human polλ by ATM-mediated phosphorylation during non-homologous end joining. DNA Repair, 2017, 51, 31-45.	2.8	13
25	Genome-wide prediction of topoisomerase Ill^2 binding by architectural factors and chromatin accessibility. PLoS Computational Biology, 2021, 17, e1007814.	3.2	8
26	Sister chromatid recombination. , 2006, , 221-249.		1
27	APLF (C2orf13) Is a Novel Component of Poly(ADP-Ribose) Signaling in Mammalian Cells. Molecular and Cellular Biology, 2008, 28, 7261-7261.	2.3	1
28	Analysis of Relevance and Redundance onÂTopoisomerase 2b (TOP2B) Binding Sites: A Feature Selection Approach. Lecture Notes in Computer Science, 2018, , 86-101.	1.3	0