
## MÃ;ria FÃ;berovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2605331/publications.pdf Version: 2024-02-01



MÃ: DIA FÃ: REDOVÃ:

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Magnetic properties of soft magnetic Fe@SiO2/ferrite composites prepared by wet/dry method. Journal of Magnetism and Magnetic Materials, 2022, 543, 168640.                                   | 2.3 | 22        |
| 2  | Eco-friendly soft magnetic composites of iron coated by sintered ferrite via mechanofusion. Journal of Magnetism and Magnetic Materials, 2022, 543, 168627.                                   | 2.3 | 14        |
| 3  | Energy loss separation in NiFeMo compacts with smoothed powders according to Landgraf's and<br>Bertotti's theories. Journal of Materials Science, 2021, 56, 12835-12844.                      | 3.7 | 7         |
| 4  | Barkhausen noise emission in Fe-resin soft magnetic composites. Journal of Magnetism and Magnetic<br>Materials, 2021, 525, 167683.                                                            | 2.3 | 5         |
| 5  | Fabrication of a glycerol-citrate polymer coated tricalcium phosphate bone cements: Structural investigation and material properties. Journal of Polymer Research, 2021, 28, 1.               | 2.4 | 2         |
| 6  | Analysis of Magnetic Properties of Iron-Resin-Ferrite Soft Magnetic Composite Materials. Acta Physica<br>Polonica A, 2021, 140, 64-71.                                                        | 0.5 | 0         |
| 7  | Impact of particles surface smoothing on DC permeability of NiFeMo soft magnetic powder compacts.<br>Journal of Magnetism and Magnetic Materials, 2021, 538, 168298.                          | 2.3 | 1         |
| 8  | Influence of inner demagnetizing field on energy loss in nifemo compacted powder. AIP Conference<br>Proceedings, 2021, , .                                                                    | 0.4 | 1         |
| 9  | Iron Based Soft Magnetic Composite Material Prepared By Injection Molding. Powder Metallurgy<br>Progress, 2021, 21, 10-17.                                                                    | 0.1 | 0         |
| 10 | Influence of the Ferromagnetic Component on the Magnetic Properties of Polymer-Matrix Soft<br>Magnetic Composites. Powder Metallurgy Progress, 2021, 21, 1-9.                                 | 0.1 | 0         |
| 11 | Preparation and magnetic properties of NiFeMo powdered compacts of powder elements with smoothed surfaces. Journal of Magnetism and Magnetic Materials, 2020, 494, 165770.                    | 2.3 | 14        |
| 12 | Novel hardystonite calcium phosphate mixture as a potential cementitious bone filling material.<br>Journal of the European Ceramic Society, 2020, 40, 4909-4922.                              | 5.7 | 1         |
| 13 | Preparation and characterization of iron-based soft magnetic composites with resin bonded nano-ferrite insulation. Journal of Alloys and Compounds, 2020, 828, 154416.                        | 5.5 | 30        |
| 14 | Magnetic properties of selected Fe-based soft magnetic composites interpreted in terms of<br>Jiles-Atherton model parameters. Journal of Magnetism and Magnetic Materials, 2020, 502, 166514. | 2.3 | 25        |
| 15 | Anhysteretic Magnetization for NiFeMo Soft Magnetic Compacted Powder. Acta Physica Polonica A,<br>2020, 137, 889-891.                                                                         | 0.5 | 0         |
| 16 | Preparation and Characterization of Fe Based Soft Magnetic Composites Coated by SiO <sub>2</sub><br>Layer Prepared by StA¶ber Method. Acta Physica Polonica A, 2020, 137, 872-875.            | 0.5 | 3         |
| 17 | Irreversible Permeability of Fe-Based Soft Magnetic Composites. Acta Physica Polonica A, 2020, 137,<br>843-845.                                                                               | 0.5 | 2         |
| 18 | Influence of Ferrite and Resin Content on Inner Demagnetizing Fields of Fe-Based Composite Materials<br>with Ferrite-Resin Insulation. Acta Physica Polonica A, 2020, 137, 846-848.           | 0.5 | 4         |

MÃiria FÃiberovÃi

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Characterization of Structure and Magnetic Properties of Warm Compacted Ni-Fe-Mo Soft Magnetic<br>Alloy. Acta Physica Polonica A, 2020, 137, 876-878.                                                               | 0.5 | 1         |
| 20 | Study of Reversible and Irreversible Magnetization Processes Proportions of Fe-MgO Soft Magnetic Composites. Acta Physica Polonica A, 2020, 137, 879-881.                                                           | 0.5 | 2         |
| 21 | Calcium Phosphate Cement Modified with Silicon Nitride/Tricalcium Phosphate Microgranules.<br>Powder Metallurgy Progress, 2020, 20, 56-75.                                                                          | 0.1 | Ο         |
| 22 | Functional Properties and Microstructure Development of Micro-Nano Fe/MgO Composite. Acta<br>Physica Polonica A, 2020, 137, 283-288.                                                                                | 0.5 | 2         |
| 23 | Magnetic properties of Fe-based soft magnetic composite with insulation coating by resin bonded<br>Ni-Zn ferrite nanofibres. Journal of Magnetism and Magnetic Materials, 2019, 485, 1-7.                           | 2.3 | 37        |
| 24 | Reversible and irreversible magnetization processes along DC hysteresis loops of Fe-based composite<br>materials. Journal of Magnetism and Magnetic Materials, 2019, 483, 183-190.                                  | 2.3 | 14        |
| 25 | Analysis of Magnetic Losses and Complex Permeability in Novel Soft Magnetic Composite With Ferrite<br>Nanofibers. IEEE Transactions on Magnetics, 2018, 54, 1-6.                                                    | 2.1 | 22        |
| 26 | Innovative ferrite nanofibres reinforced soft magnetic composite with enhanced electrical resistivity. Journal of Alloys and Compounds, 2018, 753, 219-227.                                                         | 5.5 | 52        |
| 27 | Irreversible permeability and DC losses relationship for selected soft magnetic materials. Journal<br>Physics D: Applied Physics, 2018, 51, 395002.                                                                 | 2.8 | 9         |
| 28 | Microstructure and Mechanical Properties of Fe/MgO Micro-Nano Composite for Electrotechnical<br>Applications. Powder Metallurgy Progress, 2018, 18, 103-110.                                                        | 0.1 | 0         |
| 29 | Properties of CaO–SiO 2 –P 2 O 5 reinforced calcium phosphate cements and in vitro osteoblast response. Biomedical Materials (Bristol), 2017, 12, 025002.                                                           | 3.3 | 4         |
| 30 | Advances in Powder Metallurgy Soft Magnetic Composite Materials. Archives of Metallurgy and<br>Materials, 2017, 62, 1149-1154.                                                                                      | 0.6 | 12        |
| 31 | A comprehensive complex permeability approach to soft magnetic bulk cores from pure or resin<br>coated Fe and pulverized alloys at elevated temperatures. Journal of Alloys and Compounds, 2017, 695,<br>1998-2007. | 5.5 | 26        |
| 32 | Steinmetz law for ac magnetized iron-phenolformaldehyde resin soft magnetic composites. Journal of<br>Magnetism and Magnetic Materials, 2017, 424, 245-250.                                                         | 2.3 | 45        |
| 33 | Analytical expression for initial magnetization curve of Fe-based soft magnetic composite material.<br>Journal of Magnetism and Magnetic Materials, 2017, 423, 140-144.                                             | 2.3 | 13        |
| 34 | Interplay of domain walls and magnetization rotation on dynamic magnetization process in<br>iron/polymer–matrix soft magnetic composites. Journal of Magnetism and Magnetic Materials, 2017,<br>426, 320-327.       | 2.3 | 37        |
| 35 | Energy Losses in Composite Materials Based on Two Ferromagnets. IEEE Transactions on Magnetics, 2017, 53, 1-6.                                                                                                      | 2.1 | 8         |
| 36 | Investigation of Magnetization Processes from the Energy Losses in Soft Magnetic Composite<br>Materials. Acta Physica Polonica A, 2017, 131, 684-686.                                                               | 0.5 | 3         |

MÃiria FÃiberovÃi

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Imaging of Magnetic Domain Structure in FeSi/Mn_{0.8}Zn_{0.2}Fe_2O_4 Composite using Magnetic<br>Force Microscopy. Acta Physica Polonica A, 2017, 131, 714-716.                                            | 0.5 | 2         |
| 38 | FeSiBAlNiMo High Entropy Alloy Prepared by Mechanical Alloying. Acta Physica Polonica A, 2017, 131, 771-773.                                                                                               | 0.5 | 5         |
| 39 | Microwave Sintered Fe/MgO Soft Magnetic Composite. Acta Physica Polonica A, 2017, 131, 780-782.                                                                                                            | 0.5 | 5         |
| 40 | DC Magnetic Properties and Complex Permeability of Ni-Fe Based Composites. Acta Physica Polonica A, 2017, 131, 792-794.                                                                                    | 0.5 | 2         |
| 41 | Influence of Vitrovac Content on Magnetic Properties in Composite Materials Based on the Mixture of<br>Two Ferromagnets. Acta Physica Polonica A, 2017, 131, 765-767.                                      | 0.5 | 1         |
| 42 | The Influence of NiZnFe_2O_4 Content on Magnetic Properties of Supermalloy Type Material. Acta Physica Polonica A, 2017, 131, 813-815.                                                                     | 0.5 | 3         |
| 43 | Magnetic Properties of Sintered Fe_{50}Co_{50} Powder Cores. Acta Physica Polonica A, 2017, 131, 807-809.                                                                                                  | 0.5 | 2         |
| 44 | The Preparation of Soft Magnetic Composites Based on FeSi and Ferrite Fibers. Powder Metallurgy<br>Progress, 2016, 16, 107-116.                                                                            | 0.1 | 2         |
| 45 | Effect of phase composition of calcium silicate phosphate component on properties of brushite based composite cements. Materials Characterization, 2016, 117, 17-29.                                       | 4.4 | 17        |
| 46 | A Novel Composite Material Designed from FeSi Powder and<br>Mn <sub>0.8</sub> Zn <sub>0.2</sub> Fe <sub>2</sub> O <sub>4</sub> Ferrite. Advances in Materials<br>Science and Engineering, 2015, 2015, 1-8. | 1.8 | 6         |
| 47 | A comparison of soft magnetic composites designed from different ferromagnetic powders and phenolic resins. Chinese Journal of Chemical Engineering, 2015, 23, 736-743.                                    | 3.5 | 37        |
| 48 | Reversible and irreversible DC magnetization processes in the frame of magnetic, thermal and electrical properties of Fe-based composite materials. Journal of Alloys and Compounds, 2015, 645, 283-289.   | 5.5 | 31        |
| 49 | Chemical synthesis of nickel ferrite spinel designed as an insulating bilayer coating on ferromagnetic particles. Surface and Coatings Technology, 2015, 270, 66-76.                                       | 4.8 | 17        |
| 50 | Dependence of demagnetizing fields in Fe-based composite materials on magnetic particle size and the resin content. Journal of Magnetism and Magnetic Materials, 2015, 388, 76-81.                         | 2.3 | 39        |
| 51 | Influence of the Resin Content on the Dynamic Energy Losses in Iron–Phenolphormaldehyde Resin<br>Composites. IEEE Transactions on Magnetics, 2014, 50, 1-7.                                                | 2.1 | 16        |
| 52 | Magnetic Properties of Soft Magnetic FeSi Composite Powder Cores. Acta Physica Polonica A, 2014, 126,<br>144-145.                                                                                          | 0.5 | 9         |
| 53 | Structure and Properties of Composites Based on Mixed Morphology of Ferromagnetic Particles. Acta<br>Physica Polonica A, 2014, 126, 140-141.                                                               | 0.5 | 2         |
| 54 | Mössbauer and Magnetic Study of Fe+Vitroperm+Plastic System. Acta Physica Polonica A, 2014, 126,<br>148-149.                                                                                               | 0.5 | 0         |

MÃiria FÃiberovÃi

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Influence of Vitroperm Content on the Energy Losses in Composite Materials Based on the Mixture of<br>Two Ferromagnets. Acta Physica Polonica A, 2014, 126, 114-115.                                                               | 0.5  | 3         |
| 56 | Steinmetz law in iron–phenolformaldehyde resin soft magnetic composites. Journal of Magnetism and<br>Magnetic Materials, 2014, 353, 65-70.                                                                                         | 2.3  | 30        |
| 57 | A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods. Materials Chemistry and Physics, 2014, 147, 649-660.                                                       | 4.0  | 43        |
| 58 | Thermoplastic polybutadiene-based polyurethane/carbon nanofiber composites. Composites Part B:<br>Engineering, 2014, 67, 434-440.                                                                                                  | 12.0 | 22        |
| 59 | Characterization of composite materials based on Fe powder (core) and phenol–formaldehyde resin<br>(shell) modified with nanometer-sized SiO2. Bulletin of Materials Science, 2014, 37, 167-177.                                   | 1.7  | 31        |
| 60 | Complex permeability and core loss of soft magnetic Fe-based nanocrystalline powder cores. Journal of Magnetism and Magnetic Materials, 2013, 345, 77-81.                                                                          | 2.3  | 52        |
| 61 | Power loss separation in Fe-based composite materials. Journal of Magnetism and Magnetic Materials, 2013, 327, 146-150.                                                                                                            | 2.3  | 202       |
| 62 | Design of novel soft magnetic composites based on Fe/resin modified with silica. Materials Letters, 2013, 101, 37-40.                                                                                                              | 2.6  | 54        |
| 63 | Contribution to Characterization of Vitroperm Based Composites. AASRI Procedia, 2012, 3, 667-673.                                                                                                                                  | 0.6  | 0         |
| 64 | Conservation and divergence between cytoplasmic and muscle-specific actin capping proteins: insights<br>from the crystal structure of cytoplasmic Cap32/34 from Dictyostelium discoideum. BMC Structural<br>Biology, 2012, 12, 12. | 2.3  | 2         |
| 65 | Preparation, chemical and mechanical properties of microcomposite materials based on Fe powder and phenol-formaldehyde resin. Chemical Engineering Journal, 2012, 180, 343-353.                                                    | 12.7 | 30        |
| 66 | Analysis of the Complex Permeability Versus Frequency of Soft Magnetic Composites Consisting of<br>Iron and \${m Fe}_{73}{m Cu}_{1}{m Nb}_{3}{m Si}_{16}{m B}_{7}\$. IEEE Transactions on<br>Magnetics, 2012, 48, 1545-1548.       | 2.1  | 39        |
| 67 | AC Magnetic Properties of Fe-Based Composite Materials. IEEE Transactions on Magnetics, 2010, 46, 467-470.                                                                                                                         | 2.1  | 38        |
| 68 | Wide Frequency Range AC Magnetic Properties of Fe-Based Composite Materials. Acta Physica Polonica<br>A, 2010, 118, 759-761.                                                                                                       | 0.5  | 8         |
| 69 | AC Magnetic Properties of Vitroperm Based Composite Materials. Acta Physica Polonica A, 2010, 118,<br>787-789.                                                                                                                     | 0.5  | 4         |
| 70 | The structure and properties of the PM material Vanadis 30 with surface treatment. Journal of Materials Science, 2005, 40, 4889-4891.                                                                                              | 3.7  | 4         |
| 71 | Quantification of Carbide Distribution in PM Tool Steels with Niob Addition. Key Engineering<br>Materials, 0, 465, 310-313.                                                                                                        | 0.4  | 1         |
|    |                                                                                                                                                                                                                                    |      |           |

72 Fe/MgO Powder Composite Sintered by Microwave Heating. , 0, , .

| #  | Article                                                          | IF | CITATIONS |
|----|------------------------------------------------------------------|----|-----------|
| 73 | Microwave Annealing of Powder Metals without Sintering. , 0, , . |    | 0         |