
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2604387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CH ₃ NH ₃ Sn _{<i>x</i>} Pb _(1–<i>x</i>) I ₃ Perovskite Solar Cells Covering up to 1060 nm. Journal of Physical Chemistry Letters, 2014, 5, 1004-1011.	4.6	852
2	Highly Luminescent Phase-Stable CsPbl ₃ Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. ACS Nano, 2017, 11, 10373-10383.	14.6	748
3	Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy, 2020, 74, 104858.	16.0	347
4	Colloidal Synthesis of Air-Stable Alloyed CsSn _{1–<i>x</i>} Pb _{<i>x</i>} I ₃ Perovskite Nanocrystals for Use in Solar Cells. Journal of the American Chemical Society, 2017, 139, 16708-16719.	13.7	314
5	Mixed Sn–Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air. Journal of Physical Chemistry Letters, 2018, 9, 1682-1688.	4.6	206
6	Suppression of Charge Carrier Recombination in Lead-Free Tin Halide Perovskite via Lewis Base Post-treatment. Journal of Physical Chemistry Letters, 2019, 10, 5277-5283.	4.6	196
7	All-Solid Perovskite Solar Cells with HOCO-R-NH ₃ ⁺ I [–] Anchor-Group Inserted between Porous Titania and Perovskite. Journal of Physical Chemistry C, 2014, 118, 16651-16659.	3.1	191
8	Highly Efficient 17.6% Tin–Lead Mixed Perovskite Solar Cells Realized through Spike Structure. Nano Letters, 2018, 18, 3600-3607.	9.1	114
9	Effects of sodium on electrical properties in Cu2ZnSnS4 single crystal. Applied Physics Letters, 2014, 104, .	3.3	113
10	Gel ₂ Additive for High Optoelectronic Quality CsPbl ₃ Quantum Dots and Their Application in Photovoltaic Devices. Chemistry of Materials, 2019, 31, 798-807.	6.7	112
11	Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells. Nano Energy, 2018, 53, 17-26.	16.0	110
12	Role of Gel2 and SnF2 additives for SnGe perovskite solar cells. Nano Energy, 2019, 58, 130-137.	16.0	104
13	Relationship between Lattice Strain and Efficiency for Sn-Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 31105-31110.	8.0	101
14	Charge transfer and recombination at the metal oxide/CH ₃ NH ₃ PbClI ₂ /spiro-OMeTAD interfaces: uncovering the detailed mechanism behind high efficiency solar cells. Physical Chemistry Chemical Physics, 2014, 16, 19984-19992.	2.8	88
15	Facile Synthesis and Characterization of Sulfur Doped Low Bandgap Bismuth Based Perovskites by Soluble Precursor Route. Chemistry of Materials, 2016, 28, 6436-6440.	6.7	87
16	Optical absorption, charge separation and recombination dynamics in Sn/Pb cocktail perovskite solar cells and their relationships to photovoltaic performances. Journal of Materials Chemistry A, 2015, 3, 9308-9316.	10.3	85
17	Sharp band edge photoluminescence of high-purity CuInS2 single crystals. Applied Physics Letters, 2001, 78, 742-744.	3.3	75
18	Ultrafast Electron Injection from Photoexcited Perovskite CsPbI ₃ QDs into TiO ₂ Nanoparticles with Injection Efficiency near 99%. Journal of Physical Chemistry Letters, 2018, 9, 294-297.	4.6	75

#	Article	IF	CITATIONS
19	Control of Charge Dynamics through a Chargeâ€Separation Interface for Allâ€Solid Perovskiteâ€Sensitized Solar Cells. ChemPhysChem, 2014, 15, 1062-1069.	2.1	73
20	Preparation of Cu2ZnSnS4 single crystals from Sn solutions. Journal of Crystal Growth, 2012, 341, 38-41.	1.5	69
21	Correlation between intrinsic defects and electrical properties in the high-quality Cu2ZnSnS4 single crystal. Applied Physics Letters, 2013, 103, .	3.3	69
22	Investigation of Interfacial Charge Transfer in Solution Processed Cs ₂ SnI ₆ Thin Films. Journal of Physical Chemistry C, 2017, 121, 13092-13100.	3.1	66
23	Theoretical analysis of band alignment at back junction in Sn–Ge perovskite solar cells with inverted p-i-n structure. Solar Energy Materials and Solar Cells, 2020, 206, 110268.	6.2	66
24	Growth and characterization of p-type AgInS2 crystals. Journal of Physics and Chemistry of Solids, 2003, 64, 1839-1842.	4.0	58
25	Slow hot carrier cooling in cesium lead iodide perovskites. Applied Physics Letters, 2017, 111, .	3.3	56
26	Reducing trap density and carrier concentration by a Ge additive for an efficient quasi 2D/3D perovskite solar cell. Journal of Materials Chemistry A, 2020, 8, 2962-2968.	10.3	53
27	Understanding charge transfer and recombination by interface engineering for improving the efficiency of PbS quantum dot solar cells. Nanoscale Horizons, 2018, 3, 417-429.	8.0	50
28	Structural, electrical and optical properties of AgInS2 thin films grown by thermal evaporation method. Journal of Physics and Chemistry of Solids, 2005, 66, 1858-1861.	4.0	44
29	Growth of Cu2ZnSnSe4 single crystals from Sn solutions. Journal of Crystal Growth, 2012, 354, 147-151.	1.5	41
30	Solutionâ€Processed Air‧table Copper Bismuth Iodide for Photovoltaics. ChemSusChem, 2018, 11, 2930-2935.	6.8	39
31	Structural and optical characterization of Sb-doped CuInS2 thin films grown by vacuum evaporation method. Journal of Physics and Chemistry of Solids, 2003, 64, 1863-1867.	4.0	38
32	Electron Scattering Mechanism of FTO Films Grown by Spray Pyrolysis Method. Journal of Electronic Materials, 2010, 39, 819-822.	2.2	38
33	Optical Characterization of the ZnTe Pure-Green LED. Physica Status Solidi (B): Basic Research, 2002, 229, 977-980.	1.5	35
34	Photocarrier localization and recombination dynamics in Cu2ZnSnS4 single crystals. Applied Physics Letters, 2013, 103, .	3.3	34
35	Huge suppression of charge recombination in P3HT–ZnO organic–inorganic hybrid solar cells by locating dyes at the ZnO/P3HT interfaces. Physical Chemistry Chemical Physics, 2013, 15, 14370.	2.8	33
36	Growth of CuInS2 crystals by a hot-press method. Journal of Crystal Growth, 2002, 236, 253-256.	1.5	27

#	Article	IF	CITATIONS
37	Architecture of the Interface between the Perovskite and Holeâ€Transport Layers in Perovskite Solar Cells. ChemSusChem, 2016, 9, 2634-2639.	6.8	27
38	Impact of Auger recombination on performance limitation of perovskite solar cell. Solar Energy, 2021, 217, 342-353.	6.1	27
39	Crystal growth and photoluminescence of CuInXGa1â^'XSe2 alloys. Journal of Crystal Growth, 2000, 211, 476-479.	1.5	26
40	Growth and characterization of Cu ₂ ZnSnS ₄ single crystals. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1328-1331.	1.8	26
41	Optical and electrical properties of AgIn(SSe)2 crystals. Physica B: Condensed Matter, 2001, 302-303, 349-356.	2.7	25
42	Enhanced Device Performance with Passivation of the TiO ₂ Surface Using a Carboxylic Acid Fullerene Monolayer for a SnPb Perovskite Solar Cell with a Normal Planar Structure. ACS Applied Materials & Interfaces, 2020, 12, 17776-17782.	8.0	24
43	Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy. Journal of Applied Physics, 1999, 86, 4354-4359.	2.5	23
44	Polarized Raman spectroscopy of Cu-poor and Zn-rich single-crystal Cu2ZnSnSe4. Applied Physics Letters, 2014, 105, .	3.3	23
45	Temperature-dependent photocarrier recombination dynamics in Cu ₂ ZnSnS ₄ single crystals. Applied Physics Letters, 2014, 104, 081907.	3.3	23
46	Dependence of Cu/In ratio of structural and electrical characterization of CuInS2 crystal. Journal of Materials Science: Materials in Electronics, 2008, 19, 301-304.	2.2	22
47	Annealing effects of a high-quality ZnTe substrate. Journal of Electronic Materials, 2004, 33, 579-582.	2.2	21
48	Thermo-physical properties of Cu2ZnSnS4 single crystal. Journal of Crystal Growth, 2014, 393, 167-170.	1.5	21
49	Structural, optical and electrical characterization on ZnO film grown by a spray pyrolysis method. Journal of Materials Science: Materials in Electronics, 2005, 16, 403-408.	2.2	20
50	Growth and characterization of Cu2ZnSn(S Se1â^')4 alloys grown by the melting method. Journal of Crystal Growth, 2014, 386, 204-207.	1.5	20
51	Enhanced performance of ZnO based perovskite solar cells by Nb2O5 surface passivation. Organic Electronics, 2018, 62, 615-620.	2.6	20
52	Characterization of AgGaSe2 thin films grown by post annealing method. Thin Solid Films, 2006, 515, 505-508.	1.8	19
53	Free-carrier dynamics and band tails in Cu2ZnSn(SxSe1â^'x)4 : Evaluation of factors determining solar cell efficiency. Physical Review B, 2015, 92, .	3.2	19
54	Improving Photovoltaic Performance of ZnO Nanowires Based Colloidal Quantum Dot Solar Cells via SnO2 Passivation Strategy. Frontiers in Energy Research, 2019, 7, .	2.3	19

#	Article	IF	CITATIONS
55	Crystal growth of AgIn1â^'XGaXSe2 crystals grown by a vertical gradient freeze method. Journal of Crystal Growth, 2002, 236, 257-260.	1.5	18
56	Comparison of Sb, As, and P doping in Cd-rich CdTe single crystals: Doping properties, persistent photoconductivity, and long-term stability. Applied Physics Letters, 2020, 116, .	3.3	18
57	Growth of Cu ₂ ZnSnS ₄ Single Crystal by Traveling Heater Method. Japanese Journal of Applied Physics, 2011, 50, 128001.	1.5	17
58	Environmentally friendly thermoelectric sulphide Cu ₂ ZnSnS ₄ single crystals achieving a 1.6 dimensionless figure of merit <i>ZT</i> . Journal of Materials Chemistry A, 2021, 9, 15595-15604.	10.3	17
59	Surface-Modified Graphene Oxide/Lead Sulfide Hybrid Film-Forming Ink for High-Efficiency Bulk Nano-Heterojunction Colloidal Quantum Dot Solar Cells. Nano-Micro Letters, 2020, 12, 111.	27.0	16
60	Effect of annealing for CuInS ₂ thin films prepared from Cuâ€rich ternary compound. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1030-1033.	0.8	15
61	Degradation of GaN LEDs by electron irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 173, 57-60.	3.5	15
62	Photocarrier dynamics in undoped and Na-doped Cu ₂ ZnSnS ₄ single crystals revealed by ultrafast time-resolved terahertz spectroscopy. Applied Physics Express, 2015, 8, 062303.	2.4	14
63	Na-doped Cu2ZnSnS4 single crystal grown by traveling-heater method. Journal of Crystal Growth, 2016, 453, 119-123.	1.5	14
64	Peculiarities of Linear Thermal Expansion of CuInS ₂ Single Crystals. Japanese Journal of Applied Physics, 2011, 50, 05FB04.	1.5	14
65	Effects of substrate treatment and growth conditions on structure, morphology, and luminescence of homoepitaxial ZnTe deposited by metalorganic vapor phase epitaxy. Journal of Applied Physics, 2004, 96, 1230-1237.	2.5	13
66	Optical and electrical characterization of FTO films grown by spray pyrolysis method. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1124-1126.	0.8	13
67	Photoluminescence spectra of CuGaSe2 crystals. Physica B: Condensed Matter, 2001, 302-303, 357-363.	2.7	12
68	Structural and magnetic characterization of Mn-doped ZnO films grown by spray pyrolysis method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 234-236.	3.5	12
69	Low-Temperature Growth of ZnO Films by Spray Pyrolysis. Japanese Journal of Applied Physics, 2011, 50, 040207.	1.5	12
70	Growth and characterization of indium-doped Zn ₃ P ₂ bulk crystals. Japanese Journal of Applied Physics, 2016, 55, 041201.	1.5	12
71	Crystallization of Amorphous GeSe2Semiconductor by Isothermal Annealing without Light Radiation. Japanese Journal of Applied Physics, 2000, 39, 1058-1061.	1.5	11
72	Temperature variation of nonradiative carrier recombination processes in high-quality CuGaSe2 thin films grown by molecular beam epitaxy. Applied Physics Letters, 2000, 77, 259-261.	3.3	11

#	Article	IF	CITATIONS
73	Optical characterization of native defects in ZnSe substrate. Physica B: Condensed Matter, 2001, 302-303, 299-306.	2.7	11
74	Growth and characterization of Cu2ZnSn(S Se1â^')4 single crystal grown by traveling heater method. Journal of Crystal Growth, 2015, 423, 9-15.	1.5	11
75	Cation ratio fluctuations in Cu ₂ ZnSnS ₄ at the 20 nm length scale investigated by analytical electron microscopy. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2392-2399.	1.8	11
76	Enhancement of charge transport in quantum dots solar cells by N-butylamine-assisted sulfur-crosslinking of PbS quantum dots. Solar Energy, 2018, 174, 399-408.	6.1	11
77	Surface morphology of evaporated CuInS2 thin films grown by single source thermal evaporation technique. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1486-1487.	2.1	10
78	MOVPE growth and characterisation of ZnTe epilayers on (100)ZnTe:P substrates. Journal of Crystal Growth, 2003, 248, 37-42.	1.5	10
79	Dependence of oxygen flow rate on piezoelectric photothermal spectra of ZnO thin films grown by a reactive plasma deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 70-73.	3.5	10
80	Structural and electrical characterization of AgInS2 thin films grown by single-source thermal evaporation method. Journal of Materials Science: Materials in Electronics, 2005, 16, 393-396.	2.2	10
81	Controlling the processable ZnO and polythiophene interface for dye-sensitized thin film organic solar cells. Thin Solid Films, 2013, 536, 302-307.	1.8	10
82	Growth and characterization of ZnS films by spray pyrolysis. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1102-1106.	0.8	10
83	Atmospheric growth of ZnO films deposited by spray pyrolysis using diethylzinc solution. Journal of Crystal Growth, 2017, 468, 473-476.	1.5	10
84	Growth of CuSbS ₂ Single Crystal as an Environmentally Friendly Thermoelectric Material. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800861.	1.8	10
85	Relationship between Carrier Density and Precursor Solution Stirring for Lead-Free Tin Halide Perovskite Solar Cells Performance. ACS Applied Energy Materials, 2022, 5, 4002-4007.	5.1	10
86	Proton irradiation damages in CuInSe2 thin film solar cell materials by a piezoelectric photothermal spectroscopy. Solid-State Electronics, 2004, 48, 1815-1818.	1.4	9
87	Study of steady-state photoluminescence of AgInSe2 crystals. Thin Solid Films, 2008, 517, 1445-1448.	1.8	9
88	Growth and Annealing of ZnO Films Grown by Spray Pyrolysis. Japanese Journal of Applied Physics, 2008, 47, 8170.	1.5	9
89	Radiation damage of Si1-xGex S/D p-type metal oxide semiconductor field effect transistor with different Ge concentrations. Thin Solid Films, 2012, 520, 3337-3340.	1.8	9
90	Fabrication of an efficient electrodeposited Cu2ZnSnS4-based solar cells with more than 6% conversion efficiency using a sprayed Ga-doped ZnO window layer. RSC Advances, 2014, 4, 24351-24355.	3.6	9

#	Article	IF	CITATIONS
91	Solution growth of chalcopyrite compounds single crystal. Renewable Energy, 2015, 79, 127-130.	8.9	9
92	Impurity Levels of Alkaline Metals in Zincselenide Single Crystals Examined by Photoluminescence. Japanese Journal of Applied Physics, 1995, 34, 61-65.	1.5	8
93	Photoluminescence and photoacoustic spectra of N-doped ZnSe epitaxial layers grown by molecular beam epitaxy. Journal of Crystal Growth, 2000, 214-215, 572-575.	1.5	8
94	Optical and electrical characterization of high-quality P-doped ZnTe substrates. Physica B: Condensed Matter, 2003, 340-342, 254-257.	2.7	8
95	Peculiarities of Linear Thermal Expansion of CuInS2Single Crystals. Japanese Journal of Applied Physics, 2011, 50, 05FB04.	1.5	8
96	Low-Temperature Growth of ZnO Films by Spray Pyrolysis. Japanese Journal of Applied Physics, 2011, 50, 040207.	1.5	8
97	Piezoelectric Photoacoustic and Photoluminescence Properties of CulnXGa1-XSe2Alloys. Japanese Journal of Applied Physics, 1999, 38, 3171-3174.	1.5	7
98	Growth of Bulk-ZnS by Solid Phase Recrystallization. Physica Status Solidi A, 2000, 180, 183-187.	1.7	7
99	Preparation of a CuGaSe ₂ single crystal and its photocathodic properties. RSC Advances, 2020, 10, 40310-40315.	3.6	7
100	Temperature dependence of luminescence in ZnSe. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 35, 68-71.	3.5	6
101	Photoluminescence of Zincselenide Single Crystals Grown by the Sublimation Method. Japanese Journal of Applied Physics, 1995, 34, 6331-6333.	1.5	6
102	Nonradiative Carrier Recombination in p-Type ZnSe Thin Films Grown by Molecular Beam Epitaxy. Physica Status Solidi (B): Basic Research, 1998, 210, 491-495.	1.5	6
103	Structural and optical characterization of CulnS2 thin films grown by vacuum evaporation method. Journal of Materials Science: Materials in Electronics, 2003, 14, 291-294.	2.2	6
104	Characterization of AgInS2 thin films prepared by vacuum evaporation. Physica B: Condensed Matter, 2012, 407, 2858-2860.	2.7	6
105	Pb-free Sn Perovskite Solar Cells Doped with Samarium Iodide. Chemistry Letters, 2019, 48, 836-839.	1.3	6
106	Arsenic doped Cd-rich CdTe: equilibrium doping limit and long lifetime for high open-circuit voltage solar cells greater than 900 mV. Applied Physics Express, 2019, 12, 081002.	2.4	6
107	Phase diagram of the Ag2SnS3–ZnS pseudobinary system for Ag2ZnSnS4 crystal growth. Journal of Crystal Growth, 2021, 555, 125967.	1.5	6
108	Chalcostibite Single-Crystal CuSbS ₂ as High-Performance Thermoelectric Material. Materials Transactions, 2020, 61, 2407-2411.	1.2	6

#	Article	IF	CITATIONS
109	Deep levels in ZnSe epitaxial layers examined by piezoelectric photoacoustic spectroscopy. Journal of Crystal Growth, 1998, 184-185, 1151-1154.	1.5	5
110	Nonradiative Carrier Recombination Centers of Cl-Doped ZnSe Epitaxial Layers. Physica Status Solidi A, 2000, 180, 201-205.	1.7	5
111	Growth and characterization of codoping of ZnSe:Cl with Li grown by molecular beam epitaxy on GaAs. Physica B: Condensed Matter, 2001, 302-303, 166-171.	2.7	5
112	Characteristic of Low Resistivity Fluorine-Doped SnO2Thin Films Grown by Spray Pyrolysis. Japanese Journal of Applied Physics, 2011, 50, 05FB15.	1.5	5
113	Ge content dependence of radiation damage in Si _{1â€x} Ge _x source/drain pâ€ŧype metal oxide semiconductor field effect transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1148-1151.	0.8	5
114	The Effect of Transparent Conductive Oxide Substrate on the Efficiency of SnGe-perovskite Solar Cells. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 597-602.	0.3	5
115	Micro-scale current path distributions of Zn1-Mg O-coated SnO2:F transparent electrodes prepared by sol-gel and sputtering methods in perovskite solar cells. Thin Solid Films, 2019, 669, 455-460.	1.8	5
116	Hot-injection and ultrasonic irradiation syntheses of Cs2SnI6 quantum dot using Sn long-chain amino-complex. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	5
117	Deep Levels in Br-Doped ZnSe Single Crystals Grown by Physical Vapor Transport. Physica Status Solidi (B): Basic Research, 2002, 229, 291-295.	1.5	4
118	Optical Characterization of High Quality ZnTe Substrate. Physica Status Solidi A, 2002, 192, 218-223.	1.7	4
119	Characterization of proton irradiated AgInSe2thin film. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1067-1069.	0.8	4
120	Low Sheet Resistivity of Transparent Ga-Doped ZnO Film Grown by Atmospheric Spray Pyrolysis. Japanese Journal of Applied Physics, 2011, 50, 088001.	1.5	4
121	Structural and Electronic Structure of SnO ₂ by the First-Principle Study. Materials Science Forum, 0, 725, 265-268.	0.3	4
122	Surface Morphology of Transparent Conductive ZnO Film Grown by DC Sputtering Method. Advanced Materials Research, 0, 894, 403-407.	0.3	4
123	Characteristic of Low Resistivity Fluorine-Doped SnO ₂ Thin Films Grown by Spray Pyrolysis. Japanese Journal of Applied Physics, 2011, 50, 05FB15.	1.5	4
124	Low Sheet Resistivity of Transparent Ga-Doped ZnO Film Grown by Atmospheric Spray Pyrolysis. Japanese Journal of Applied Physics, 2011, 50, 088001.	1.5	4
125	Piezoelectric photoacoustic spectra of CuInSe2 thin film grown by molecular beam epitaxy. Thin Solid Films, 1999, 343-344, 591-593.	1.8	3
126	Photoacoustic Spectra for Porous Silicon Using Piezoelectric Transducer and Microphone. Japanese Journal of Applied Physics, 2001, 40, 3610-3613.	1.5	3

#	Article	IF	CITATIONS
127	Proton-beam-induced defect levels in CuInSe2 thin-film absorbers: An investigation on nonradiative electron transitions. Applied Physics Letters, 2004, 85, 1347-1349.	3.3	3
128	Thickness Dependence of Structure and Optical Characteristics in Fluorine-Doped SnO\$_{2}\$ Films Grown by Spray Pyrolysis Method. Japanese Journal of Applied Physics, 2012, 51, 125503.	1.5	3
129	Optical and electrical characterization of transparent Gaâ€doped ZnO thin films grown by atmospheric spray pyrolysis using diethylzinc solution. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1015-1018.	0.8	3
130	Single-step fabrication of all-solid dye-sensitized solar cells using solution-processable precursor. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1846-1850.	1.8	3
131	Effect of hydrogen partial pressure on growth of Cu ₂ ZnSnS ₄ films sulfurized using diethyl sulfide. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1198-1201.	0.8	3
132	Low-temperature Growth of Porous and Dense ZnO Films for Perovskite Solar Cells on ITO Substrate. Chemistry Letters, 2016, 45, 176-178.	1.3	3
133	Stability Improvement of Perovskite Solar Cells by Adding Sbâ€Xanthate to Precursor Solution. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000144.	1.8	3
134	Growth of Spin-Coated ZnO Films Using Diethylzinc Solution. Japanese Journal of Applied Physics, 2011, 50, 108001.	1.5	3
135	Thickness Dependence of Structure and Optical Characteristics in Fluorine-Doped SnO2Films Grown by Spray Pyrolysis Method. Japanese Journal of Applied Physics, 2012, 51, 125503.	1.5	3
136	Growth of Cu ₂ ZnSnS ₄ Single Crystal by Traveling Heater Method. Japanese Journal of Applied Physics, 2011, 50, 128001.	1.5	3
137	Optical properties of high-quality CuGaSe2 epitaxial layers examined by piezoelectric photoacoustic spectroscopy. Solar Energy Materials and Solar Cells, 2001, 67, 173-178.	6.2	2
138	Impurity levels of high quality p-doped ZnTe single crystal. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 631-634.	0.8	2
139	Dislocation of high quality P-doped ZnTe substrate examined by X-ray topography. Journal of Materials Science: Materials in Electronics, 2005, 16, 445-448.	2.2	2
140	Optical and electrical characterization of In-doped ZnMgO films grown by spray pyrolysis method. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1120-1123.	0.8	2
141	Molecular beam epitaxial growth of ZnCrO films by using RF plasma source. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1012-1015.	0.8	2
142	Growth of IrOx–SnOxFilms Deposited by Reactive Sputtering. Japanese Journal of Applied Physics, 2011, 50, 05FB14.	1.5	2
143	Characterization of Spin Coated Nondoped and In-Doped ZnO Films Using Novel Precursor Solution. Materials Science Forum, 2012, 725, 277-280.	0.3	2
144	Temperature Dependence of Linear Thermal Expansion of CuGaSe ₂ Crystals. Materials Science Forum, 2012, 725, 171-174.	0.3	2

#	Article	IF	CITATIONS
145	Electrical Properties of Fluorine Doped Tin Dioxide Film Grown by Spray Method. Materials Science Forum, 0, 725, 281-284.	0.3	2
146	Excitonic emissions of AgInS ₂ crystals with chalcopyrite and orthorhombic structure. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1042-1045.	0.8	2
147	Radiation tolerance of Si1â^yCy source/drain n-type metal oxide semiconductor field effect transistors with different carbon concentrations. Thin Solid Films, 2014, 557, 307-310.	1.8	2
148	Growth Mechanism of ZnO Thin Films Grown by Spray Pyrolysis Using Diethylzinc Solution. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700406.	1.8	2
149	Growth and Characterization of Arsenic-Doped CdTe1â°'xSex Single Crystals Grown by the Cd-Solvent Traveling Heater Method. Journal of Electronic Materials, 2020, 49, 6971-6976.	2.2	2
150	Emissions from Deep Levels in Hydrothermal Grown ZnO Substrates. Journal of the Korean Physical Society, 2008, 53, 2959-2962.	0.7	2
151	Influence of charge transport layer on the crystallinity and charge extraction of pure tin-based halide perovskite film. Journal of Energy Chemistry, 2022, 69, 612-615.	12.9	2
152	The Effects Of Substitutional Alkaline Metals In Zinc Vacancy Of Zincselenide Single Crystals Grown By The Sublimation Method. Materials Research Society Symposia Proceedings, 1996, 442, 593.	0.1	1
153	Shallow donor levels of Li-doped ZnSe single crystals. Microelectronic Engineering, 1998, 43-44, 683-688.	2.4	1
154	The Structural and Optical Characterization of MBE-ZnSe Layer Grown on High-Quality VGF-ZnTe Substrate. Physica Status Solidi (B): Basic Research, 2002, 229, 127-131.	1.5	1
155	Title is missing!. Journal of Materials Science: Materials in Electronics, 2003, 14, 421-425.	2.2	1
156	Carrier induced magnetic anomalies in Mn-doped AgGaSe2 magnetic semiconductor. Journal of Applied Physics, 2008, 103, 07D103.	2.5	1
157	Optical charaterization of Ag/Ga composition ratio in AgGaSe ₂ thin film. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1070-1073.	0.8	1
158	Analysis of bound-exciton emissions of CulnS2crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1093-1096.	0.8	1
159	Effect of annealing for Ag-In-S thin films prepared by a vacuum evaporation method. , 2010, , .		1
160	Growth of Spin-Coated ZnO Films Using Diethylzinc Solution. Japanese Journal of Applied Physics, 2011, 50, 108001.	1.5	1
161	Effect of H2S Annealing on Ag-Rich Ag–In–S Thin Films Prepared by Vacuum Evaporation. Japanese Journal of Applied Physics, 2011, 50, 05FB06.	1.5	1
162	Local compressive stress generation in electron irradiated boronâ€doped Si _{0.75} Ge _{0.25} /Si devices. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2058-2061.	0.8	1

#	Article	IF	CITATIONS
163	Preparation of CuInS ₂ thin films from materials grown by mechanochemical method. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1019-1022.	0.8	1
164	Growth and Characterization of ZnS Films by Chemical Bath Deposition. Advanced Materials Research, 2014, 894, 416-420.	0.3	1
165	Photoelectrical properties of undoped and Na-doped Cu2ZnSnS4 single crystals measured by optical time-resolved spectroscopy. , 2015, , .		1
166	Damage repair of lens surface in CPV by silica based coating. AIP Conference Proceedings, 2016, , .	0.4	1
167	Near IR sensitive Sn based perovskite solar cells with high current density reaching 30mA/cm ² .,2016,,.		1
168	Effect of H ₂ S Annealing on Sb-Doped Cu–In–S Thin Films Prepared by Vacuum Evaporation. Japanese Journal of Applied Physics, 2012, 51, 10NC19.	1.5	1
169	Photoacoustic Study of The Effect of 0.9 eV Light Illumination in Semi-Insulating GaAs. Materials Research Society Symposia Proceedings, 1997, 484, 601.	0.1	0
170	Piezoelectric Photoacoustic Spectra In CuGaSe2 Thin Films Grown by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 1997, 485, 151.	0.1	0
171	Photoacoustic spectra of zincselenide thin films grown by molecular beam epitaxy. Microelectronic Engineering, 1998, 43-44, 689-693.	2.4	Ο
172	Nonradiative and Radiative Recombination Processes of ZnS Epitaxial Layers. Physica Status Solidi A, 2002, 192, 230-235.	1.7	0
173	Dislocation of high-quality large DCP-ZnTe substrate examined by photoluminescence and X-ray topography. Materials Science in Semiconductor Processing, 2006, 9, 45-48.	4.0	0
174	Growth and characterization of ZnSe/CdSe/ZnSe quantum dots fabricated by using an alternate molecular beam supplying method. Applied Surface Science, 2008, 254, 7913-7917.	6.1	0
175	Growth of AgInS <inf>2</inf> crystals grown by hot-presss method. , 2009, , .		Ο
176	Dependence of of thickness F-doped SnO <inf>2</inf> films grown by spray pyrolysis technique. , 2009, , .		0
177	Double band structure of ZnSe/CdSe/ZnSe quantum dots for photovoltaic devices. , 2009, , .		О
178	Growth and characterization of Mn-doped AgInS2grown by a hot-press method. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1043-1046.	0.8	0
179	Water-Repellent Silicon Surface with Nanostructure Formed by Catalysis of Single Nanosized Silver Particle. Japanese Journal of Applied Physics, 2011, 50, 128003.	1.5	0
180	Photoluminescence Study of AgInS2by Using Confocal Microscopy System. Japanese Journal of Applied Physics, 2011, 50, 05FC04.	1.5	0

#	Article	IF	CITATIONS
181	Effect of H\$_{2}\$S Annealing on Sb-Doped Cu–In–S Thin Films Prepared by Vacuum Evaporation. Japanese Journal of Applied Physics, 2012, 51, 10NC19.	1.5	0
182	Mnâ€doping effect of photoluminescence on AgInS ₂ . Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2355-2357.	0.8	0
183	Gate-Length Dependent Radiation Damage in 2-MeV Electron-Irradiated Si _{1-x} Ce _x S/D p-MOSFETs. Materials Science Forum, 0, 725, 235-238.	0.3	Ο
184	Increased Radiation Hardness of Short-Channel Electron-Irradiated Si1-xGexSource/Drain p-Type Metal Oxide Semiconductor Field-Effect Transistors at Higher Ge Content. Japanese Journal of Applied Physics, 2013, 52, 094201.	1.5	0
185	Growth of CulnGaSe ₂ Films by RF Sputtering Using CulnGaSe ₂ Single Phase Target. Applied Mechanics and Materials, 0, 372, 571-574.	0.2	0
186	Photovoltaic Systems in University of Miyazaki. Applied Mechanics and Materials, 0, 372, 555-558.	0.2	0
187	Electrical properties of Cu <inf>2</inf> ZnSnS <inf>4</inf> single crystal. , 2013, , .		0
188	All-solid Sn/Pb halide perovskite sensitized solar cells. , 2014, , .		0
189	Characterization of CuInS ₂ thin films prepared from materials grown by using the mechanochemical method and their photovoltaic applications. Japanese Journal of Applied Physics, 2015, 54, 08KC19.	1.5	0
190	Group-V doping impact on Cd-rich CdTe single crystals grown by traveling-heater method. , 2017, , .		0
191	Effect of H2S Annealing on Ag-Rich Ag–In–S Thin Films Prepared by Vacuum Evaporation. Japanese Journal of Applied Physics, 2011, 50, 05FB06.	1.5	0
192	Effect of Dimethylselenium Supply Rate on Growth of Cu(In, Ga)Se ₂ Films. IEICE Transactions on Electronics, 2012, E95.C, 1304-1306.	0.6	0
193	Growth of Cu(In,Ga)Se ₂ Films Selenized Using Dimethylselenium. Materials Transactions, 2012, 53, 1169-1171.	1.2	0
194	Preparation of Cu ₂ ZnSnS ₄ Thin Films using Copper Naphthenate, Zinc Naphthenate, and Tin Octoate as Starting Materials. IEEJ Transactions on Fundamentals and Materials, 2015, 135, 318-319.	0.2	0
195	Surface Coatings for Improving Solar Cell Efficiencies. , 2019, , .		0
196	Lead-free tin halide perovskite solar cells beyond 10 % efficiency. , 0, , .		0
197	Solution growth of chalcopyrite Cu(In1â^'x Ga x)Se2 single crystals for high open-circuit voltage photovoltaic device. High Temperature Materials and Processes, 2021, 40, 439-445.	1.4	0
198	Annealing effects on Gaâ€doped ZnO thin films grown by atmospheric spray pyrolysis using diethylzinc solution. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1600177.	0.8	0