Haishen Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2603981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dihydrophenazineâ€Derived Redox Polymer from Industrial Byâ€Product as Lithiumâ€ion Battery Cathode Material. ChemistrySelect, 2022, 7, .	1.5	3
2	Ultrastable dihydrophenazine-based polymer from industrial waste as a sustainable lithium-ion battery cathode material. New Journal of Chemistry, 2022, 46, 14314-14317.	2.8	3
3	An easily obtained hypercrosslinked pyrene-based porous organic polymer as a high performance electrode material for lithium-ion batteries. New Journal of Chemistry, 2021, 45, 7060-7064.	2.8	7
4	A reversible single-molecule ligand-gating ion transportation switch of ON–OFF–ON type through a photoresponsive pillar[6]arene channel complex. RSC Advances, 2021, 11, 7450-7453.	3.6	0
5	Readily useable bulk phenoxazine-based covalent organic framework cathode materials with superior kinetics and high redox potentials. Journal of Materials Chemistry A, 2021, 9, 10661-10665.	10.3	20
6	Phenazine-based spiroborate complex with enhanced electrochemical stability for lithium storage. New Journal of Chemistry, 2021, 45, 21534-21537.	2.8	1
7	MCNT-Reinforced Na3Fe2(PO4)3 as Cathode Material for Sodium-Ion Batteries. Arabian Journal for Science and Engineering, 2020, 45, 143-151.	3.0	14
8	Highly Stable Na ₃ Fe ₂ (PO ₄) ₃ @Hard Carbon Sodium-Ion Full Cell for Low-Cost Energy Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 1380-1387.	6.7	44
9	A New Polyanion Na ₃ Fe ₂ (PO ₄)P ₂ O ₇ Cathode with High Electrochemical Performance for Sodium-Ion Batteries. ACS Energy Letters, 2020, 5, 3788-3796.	17.4	62
10	Hypercrosslinked phenothiazine-based polymers as high redox potential organic cathode materials for lithium-ion batteries. RSC Advances, 2020, 10, 16732-16736.	3.6	22
11	Layer-structured NbSe2 anode material for sodium-ion and potassium-ion batteries. lonics, 2019, 25, 4171-4177.	2.4	20
12	A reversible ion transportation switch of ON–OFF–ON type by a ligand-gated calix[6]arene channel. Chemical Communications, 2019, 55, 3008-3011.	4.1	11
13	Aromatic-rich hydrocarbon porous networks through alkyne metathesis. Materials Chemistry Frontiers, 2017, 1, 1369-1372.	5.9	16
14	A titanium-based porous coordination polymer as a catalyst for chemical fixation of CO ₂ . Journal of Materials Chemistry A, 2017, 5, 9163-9168.	10.3	43
15	Photochemical Synthesis of Oligomeric Amphiphiles from Alkyl Oxoacids in Aqueous Environments. Journal of the American Chemical Society, 2017, 139, 6946-6959.	13.7	26
16	Solvent effects on the intramolecular charge transfer character of <i>N</i> , <i>N</i> â€diaryl dihydrophenazine catalysts for organocatalyzed atom transfer radical polymerization. Journal of Polymer Science Part A, 2017, 55, 3017-3027.	2.3	56
17	Frontispiece: Strongly Reducing, Visibleâ€Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals. Chemistry - A European Journal, 2017, 23,	3.3	1
18	Strongly Reducing, Visibleâ€Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals. Chemistry - A European Journal, 2017, 23, 10962-10968.	3.3	196

HAISHEN YANG

#	Article	IF	CITATIONS
19	Highly Active Multidentate Ligandâ€Based Alkyne Metathesis Catalysts. Chemistry - A European Journal, 2016, 22, 7959-7963.	3.3	47
20	Organocatalyzed atom transfer radical polymerization driven by visible light. Science, 2016, 352, 1082-1086.	12.6	649
21	Ionic Covalent Organic Frameworks with Spiroborate Linkage. Angewandte Chemie, 2016, 128, 1769-1773.	2.0	88
22	lonic Covalent Organic Frameworks with Spiroborate Linkage. Angewandte Chemie - International Edition, 2016, 55, 1737-1741.	13.8	503
23	Synthesis of a conjugated porous Co(<scp>ii</scp>) porphyrinylene–ethynylene framework through alkyne metathesis and its catalytic activity study. Journal of Materials Chemistry A, 2015, 3, 4954-4959.	10.3	89
24	Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles. Chemical Science, 2015, 6, 4049-4053.	7.4	118
25	Application of alkyne metathesis in polymer synthesis. Journal of Materials Chemistry A, 2014, 2, 5986.	10.3	70
26	Porous Poly(aryleneethynylene) Networks through Alkyne Metathesis. Chemistry of Materials, 2013, 25, 3718-3723.	6.7	42
27	Solution processable polydiacetylenes (PDAs) through acyclic enediyne metathesis polymerization. Chemical Science, 2013, 4, 3649.	7.4	31
28	Multidentate Triphenolsilaneâ€Based Alkyne Metathesis Catalysts. Advanced Synthesis and Catalysis, 2013, 355, 885-890.	4.3	69
29	Mechanistic Study of Glycosylation Using a Prop-1-enyl Donor. Journal of Organic Chemistry, 2013, 78, 1858-1863.	3.2	12
30	Development of hydrophilic photolabile hydroxyl protecting groups. Photochemical and Photobiological Sciences, 2012, 11, 514-517.	2.9	13
31	Oxidation with a Photolabile Carbonyl Protecting Group. Journal of Organic Chemistry, 2011, 76, 8955-8961.	3.2	12
32	Development of Trityl-Based Photolabile Hydroxyl Protecting Groups. Journal of Organic Chemistry, 2011, 76, 5873-5881.	3.2	30
33	Development of a Photolabile Carbonyl-Protecting Group Toolbox. Journal of Organic Chemistry, 2011, 76, 2040-2048.	3.2	29
34	Concise Total Synthesis of (â^')-8-Epigrosheimin. Organic Letters, 2011, 13, 3670-3673.	4.6	43
35	Diastereoselective total synthesis of 8-epigrosheimin. Tetrahedron Letters, 2009, 50, 1110-1112.	1.4	30