Guofang Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2603529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roll-to-roll graphene films for non-disposable electrocardiogram electrodes. Journal Physics D: Applied Physics, 2021, 54, 364003.	2.8	8
2	Low temperature growth of fully covered single-layer graphene using a CoCu catalyst. Nanoscale, 2017, 9, 14467-14475.	5.6	11
3	Metal-catalyst-free growth of graphene on insulating substrates by ammonia-assisted microwave plasma-enhanced chemical vapor deposition. RSC Advances, 2017, 7, 33185-33193.	3.6	34
4	Growth of continuous graphene by open roll-to-roll chemical vapor deposition. Applied Physics Letters, 2016, 109, .	3.3	36
5	Nondestructive optical visualisation of graphene domains and boundaries. Nanoscale, 2016, 8, 16427-16434.	5.6	5
6	Growth of Continuous Monolayer Graphene with Millimeter-sized Domains Using Industrially Safe Conditions. Scientific Reports, 2016, 6, 21152.	3.3	48
7	Growth of high quality, high density single-walled carbon nanotube forests on copper foils. Carbon, 2016, 98, 624-632.	10.3	31
8	Growth of high-density carbon nanotube forests on conductive TiSiN supports. Applied Physics Letters, 2015, 106, 083108.	3.3	26
9	Influence of Packing Density and Surface Roughness of Vertically-Aligned Carbon Nanotubes on Adhesive Properties of Gecko-Inspired Mimetics. ACS Applied Materials & Interfaces, 2015, 7, 3626-3632.	8.0	33
10	Increased carbon nanotube area density after catalyst generation from cobalt disilicide using a cyclic reactive ion etching approach. Journal of Applied Physics, 2014, 115, 144302.	2.5	3
11	Carbon nanotube forests growth using catalysts from atomic layer deposition. Journal of Applied Physics, 2014, 115, 144303.	2.5	10
12	Single-step CVD growth of high-density carbon nanotube forests on metallic Ti coatings through catalyst engineering. Carbon, 2014, 67, 680-687.	10.3	22
13	High density carbon nanotube growth using a plasma pretreated catalyst. Carbon, 2013, 53, 339-345.	10.3	24
14	Carbon nanotube growth for through silicon via application. Nanotechnology, 2013, 24, 125603.	2.6	39
15	Synthesis of carbon nanotubes and graphene for VLSI interconnects. Microelectronic Engineering, 2013, 107, 210-218.	2.4	15
16	Diameter and wall number control of carbon nanotubes by chemical vapor deposition. Journal of Applied Physics, 2013, 114, .	2.5	6
17	Chemical vapor deposition of carbon nanotube forests. Physica Status Solidi (B): Basic Research, 2012, 249, 2315-2322.	1.5	22
18	Applications of Carbon Nanotubes Grown by Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 01AH01.	1.5	25

GUOFANG ZHONG

#	Article	IF	CITATIONS
19	Growth of Ultrahigh Density Single-Walled Carbon Nanotube Forests by Improved Catalyst Design. ACS Nano, 2012, 6, 2893-2903.	14.6	184
20	Complementary metal-oxide-semiconductor-compatible and self-aligned catalyst formation for carbon nanotube synthesis and interconnect fabrication. Journal of Applied Physics, 2012, 111, .	2.5	13
21	Dielectric screening effects on transition energies in aligned carbon nanotubes. Physical Review B, 2012, 85, .	3.2	17
22	Applications of Carbon Nanotubes Grown by Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 01AH01.	1.5	23
23	The mechanism of the sudden termination of carbon nanotube supergrowth. Carbon, 2011, 49, 214-221.	10.3	16
24	Highâ€density growth of horizontally aligned carbon nanotubes for interconnects. Physica Status Solidi (B): Basic Research, 2010, 247, 2669-2672.	1.5	22
25	Observation of excitonic effects in metallic single-walled carbon nanotubes. Physical Review B, 2010, 82, .	3.2	20
26	Post-CMOS wafer level growth of carbon nanotubes for low-cost microsensors—a proof of concept. Nanotechnology, 2010, 21, 485301.	2.6	27
27	Acetylene: A Key Growth Precursor for Single-Walled Carbon Nanotube Forests. Journal of Physical Chemistry C, 2009, 113, 17321-17325.	3.1	120
28	Diffusion- and Reaction-Limited Growth of Carbon Nanotube Forests. ACS Nano, 2009, 3, 3560-3566.	14.6	127
29	Investigating the Diameter-Dependent Stability of Single-Walled Carbon Nanotubes. ACS Nano, 2009, 3, 1557-1563.	14.6	82
30	Use of carbon nanotubes for VLSI interconnects. Diamond and Related Materials, 2009, 18, 957-962.	3.9	54
31	Carbon nanotubes for interconnects in VLSI integrated circuits. Physica Status Solidi (B): Basic Research, 2008, 245, 2303-2307.	1.5	11
32	Controlling the Catalyst During Carbon Nanotube Growth. Journal of Nanoscience and Nanotechnology, 2008, 8, 6105-6111.	0.9	12
33	Growth Kinetics of 0.5 cm Vertically Aligned Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2007, 111, 1907-1910.	2.6	165
34	Semi-quantitative study on the fabrication of densely packed and vertically aligned single-walled carbon nanotubes. Carbon, 2006, 44, 2009-2014.	10.3	84
35	Very High Yield Growth of Vertically Aligned Single-Walled Carbon Nanotubes by Point-Arc Microwave Plasma CVD. Chemical Vapor Deposition, 2005, 11, 127-130.	1.3	85
36	Low Temperature Synthesis of Extremely Dense and Vertically Aligned Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics, 2005, 44, 1558-1561.	1.5	130

GUOFANG ZHONG

#	ARTICLE	IF	CITATIONS
37	Direct Evidence for Root Growth of Vertically Aligned Single-Walled Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition. Journal of Physical Chemistry B, 2005, 109, 19556-19559.	2.6	68
38	Large-Area Synthesis of Carbon Nanofibers by Low-Power Microwave Plasma-Assisted CVD. Chemical Vapor Deposition, 2004, 10, 125-128.	1.3	21
39	Synthesis of highly oriented and dense conical carbon nanofibers by a DC bias-enhanced microwave plasma CVD method. Thin Solid Films, 2004, 464-465, 315-318.	1.8	12
40	Selective growth of carbon nanostructures on nickel implanted nanopyramid array. Applied Surface Science, 2004, 234, 72-77.	6.1	9
41	Multi-walled carbon nanotube-based gas sensors for NH3 detection. Diamond and Related Materials, 2004, 13, 1327-1332.	3.9	136
42	Memory effects of carbon nanotube-based field effect transistors. Diamond and Related Materials, 2004, 13, 1967-1970.	3.9	18
43	CVD diamond: a novel high γ-coating for plasma display panels?. Diamond and Related Materials, 2001, 10, 809-817.	3.9	50
44	Deposition of large area high quality diamond wafers with high growth rate by DC arc plasma jet. Diamond and Related Materials, 2000, 9, 1673-1677.	3.9	8
45	Economical deposition of a large area of high quality diamond film by a high power DC arc plasma jet operating in a gas recycling mode. Diamond and Related Materials, 2000, 9, 1655-1659.	3.9	37
46	Carbon transition efficiency and process cost in high-rate, large-area deposition of diamond films by DC arc plasma jet. Diamond and Related Materials, 2000, 9, 1682-1686.	3.9	9
47	Input power dependence of growth rate and quality of diamond films deposited in a d.c. arcjet system. Diamond and Related Materials, 1999, 8, 211-214.	3.9	9
48	Fracture behavior of thick diamond films prepared by DC arc plasma jet method. Diamond and Related Materials, 1998, 7, 733-736.	3.9	12
49	A new type of DC arc plasma torch for low cost large area diamond deposition. Diamond and Related Materials, 1998, 7, 737-741.	3.9	44