
Donald T Fox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2603250/publications.pdf Version: 2024-02-01

DONALD T FOX

#	Article	IF	CITATIONS
1	Distinct responses to rare codons in select Drosophila tissues. ELife, 2022, 11, .	6.0	11
2	Communal living: the role of polyploidy and syncytia in tissue biology. Chromosome Research, 2021, 29, 245-260.	2.2	24
3	Accelerated cell cycles enable organ regeneration under developmental time constraints in the Drosophila hindgut. Developmental Cell, 2021, 56, 2059-2072.e3.	7.0	10
4	Persistent DNA damage signaling and DNA polymerase theta promote broken chromosome segregation. Journal of Cell Biology, 2021, 220, .	5.2	16
5	DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes, 2021, 12, 1882.	2.4	18
6	Toxicological Study and Genetic Basis of BTEX Susceptibility in Drosophila melanogaster. Frontiers in Genetics, 2020, 11, 594179.	2.3	12
7	Polyploidy: A Biological Force From Cells to Ecosystems. Trends in Cell Biology, 2020, 30, 688-694.	7.9	136
8	Model systems for regeneration: <i>Drosophila</i> . Development (Cambridge), 2020, 147, .	2.5	29
9	Physiology, Development, and Disease Modeling in the <i>Drosophila</i> Excretory System. Genetics, 2020, 214, 235-264.	2.9	40
10	Exploiting codon usage identifies intensity-specific modifiers of Ras/MAPK signaling in vivo. PLoS Genetics, 2020, 16, e1009228.	3.5	7
11	Cytoplasmic sharing through apical membrane remodeling. ELife, 2020, 9, .	6.0	10
12	Interphase cohesin regulation ensures mitotic fidelity after genome reduplication. Molecular Biology of the Cell, 2019, 30, 219-227.	2.1	15
13	Polyploidy and Mitotic Cell Death Are Two Distinct HIV-1 Vpr-Driven Outcomes in Renal Tubule Epithelial Cells. Journal of Virology, 2018, 92, .	3.4	15
14	Fizzy-Related dictates A cell cycle switch during organ repair and tissue growth responses in the Drosophila hindgut. ELife, 2018, 7, .	6.0	53
15	Inter-organ regulation of <i>Drosophila</i> intestinal stem cell proliferation by a hybrid organ boundary zone. Development (Cambridge), 2017, 144, 4091-4102.	2.5	18
16	Polyteny: still a giant player in chromosome research. Chromosome Research, 2017, 25, 201-214.	2.2	31
17	Proliferation of Double-Strand Break-Resistant Polyploid Cells Requires Drosophila FANCD2. Developmental Cell, 2016, 37, 444-457.	7.0	39
18	Distinct responses to reduplicated chromosomes require distinct Mad2 responses. ELife, 2016, 5, .	6.0	27

DONALD T FOX

#	Article	IF	CITATIONS
19	The expanding implications of polyploidy. Journal of Cell Biology, 2015, 209, 485-491.	5.2	177
20	Indispensable pre-mitotic endocycles promote aneuploidy in the <i>Drosophila</i> rectum. Development (Cambridge), 2014, 141, 3551-3560.	2.5	66
21	Polyploidization and Cell Fusion Contribute to Wound Healing in the Adult Drosophila Epithelium. Current Biology, 2013, 23, 2224-2232.	3.9	174
22	Endoreplication and polyploidy: insights into development and disease. Development (Cambridge), 2013, 140, 3-12.	2.5	289
23	Drosophila Stem Cell Niches: A Decade of Discovery Suggests a Unified View of Stem Cell Regulation. Developmental Cell, 2011, 21, 159-171.	7.0	277
24	Error-prone polyploid mitosis during normal <i>Drosophila</i> development. Genes and Development, 2010, 24, 2294-2302.	5.9	91
25	The Drosophila Hindgut Lacks Constitutively Active Adult Stem Cells but Proliferates in Response to Tissue Damage. Cell Stem Cell, 2009, 5, 290-297.	11.1	96
26	Lineage analysis of stem cells. Stembook, 2009, , .	0.3	7
27	Stem Cells and Their Niches: Integrated Units That Maintain Drosophila Tissues. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 49-57.	1.1	50
28	Using Bcr-Abl to Examine Mechanisms by Which Abl Kinase Regulates Morphogenesis in <i>Drosophila</i> . Molecular Biology of the Cell, 2008, 19, 378-393.	2.1	25
29	Abelson kinase (Abl) and RhoGEF2 regulate actin organization during cell constriction in Drosophila. Development (Cambridge), 2007, 134, 567-578.	2.5	126
30	Cell Adhesion: Separation of p120's Powers?. Current Biology, 2007, 17, R24-R27.	3.9	8
31	Rho1 regulates Drosophila adherens junctions independently of p120ctn. Development (Cambridge), 2005, 132, 4819-4831.	2.5	48
32	Drosophila p120catenin plays a supporting role in cell adhesion but is not an essential adherens junction component. Journal of Cell Biology, 2003, 160, 433-449.	5.2	126
33	Balancing different types of actin polymerization at distinct sites. Journal of Cell Biology, 2003, 163, 1267-1279.	5.2	104
34	Conserved function of <i>Drosophila</i> Fancd2 monoubiquitination in response to double-strand DNA breaks. G3: Genes, Genomes, Genetics, 0, , .	1.8	0