Helen A Fletcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2602742/publications.pdf

Version: 2024-02-01

61984 79698 6,102 124 43 citations h-index papers

g-index 132 132 132 6517 docs citations times ranked citing authors all docs

73

#	Article	IF	Citations
1	Host transcriptomic signatures of tuberculosis can predict immune reconstitution inflammatory syndrome in HIV patients. European Journal of Immunology, 2022, , .	2.9	3
2	A non-human primate in vitro functional assay for the early evaluation of TB vaccine candidates. Npj Vaccines, 2021, 6, 3.	6.0	7
3	The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Research, 2021, 10, 257.	1.6	2
4	T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nature Communications, 2021, 12, 2055.	12.8	102
5	The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Research, 2021, 10, 257.	1.6	0
6	Characterization of the Infant Immune System and the Influence and Immunogenicity of BCG Vaccination in Infant and Adult Rhesus Macaques. Frontiers in Immunology, 2021, 12, 754589.	4.8	0
7	Understanding the interaction between cytomegalovirus and tuberculosis in children: The way forward. PLoS Pathogens, 2021, 17, e1010061.	4.7	6
8	Cytomegalovirus antibody responses associated with increased risk of TB disease in Ugandan adults. Journal of Infectious Diseases, 2020, 221, 1127-1134.	4.0	14
9	A systematic review of the impact of psychosocial factors on immunity: Implications for enhancing BCG response against tuberculosis. SSM - Population Health, 2020, 10, 100522.	2.7	10
10	COVID-19 as a global challenge: towards an inclusive and sustainable future. Lancet Planetary Health, The, 2020, 4, e312-e314.	11.4	129
11	Serum From Melioidosis Survivors Diminished Intracellular Burkholderia pseudomallei Growth in Macrophages: A Brief Research Report. Frontiers in Cellular and Infection Microbiology, 2020, 10, 442.	3.9	11
12	Glibenclamide alters interleukin-8 and interleukin- $1\hat{l}^2$ of primary human monocytes from diabetes patients against Mycobacterium tuberculosis infection. Tuberculosis, 2020, 123, 101939.	1.9	7
13	Human Immune Responses to Melioidosis and Cross-Reactivity to Low-Virulence <i>Burkholderia</i> Species, Thailand1. Emerging Infectious Diseases, 2020, 26, 463-471.	4.3	15
14	Adaption of the ex vivo mycobacterial growth inhibition assay for use with murine lung cells. Scientific Reports, 2020, 10, 3311.	3.3	10
15	Red cell transfusion in outpatients with myelodysplastic syndromes: a feasibility and exploratory randomised trial. British Journal of Haematology, 2020, 189, 279-290.	2.5	56
16	How can we improve priority-setting for investments in health research? A case study of tuberculosis. Health Research Policy and Systems, 2019, 17, 68.	2.8	2
17	Impact of individual-level factors on Ex vivo mycobacterial growth inhibition: Associations of immune cell phenotype, cytomegalovirus-specific response and sex with immunity following BCG vaccination in humans. Tuberculosis, 2019, 119, 101876.	1.9	9
18	RUTI Vaccination Enhances Inhibition of Mycobacterial Growth ex vivo and Induces a Shift of Monocyte Phenotype in Mice. Frontiers in Immunology, 2019, 10, 894.	4.8	24

#	Article	IF	Citations
19	In vitro Mycobacterial Growth Inhibition in South Korean Adults With Latent TB Infection. Frontiers in Immunology, 2019, 10, 896.	4.8	10
20	Historical BCG vaccination combined with drug treatment enhances inhibition of mycobacterial growth ex vivo in human peripheral blood cells. Scientific Reports, 2019, 9, 4842.	3.3	15
21	Differences in monocyte: lymphocyte ratio and Tuberculosis disease progression in genetically distinct populations of macaques. Scientific Reports, 2019, 9, 3340.	3.3	16
22	The Future of Vaccines for Tuberculosis. Clinics in Chest Medicine, 2019, 40, 849-856.	2.1	5
23	<scp>HIV</scp> , <scp> HCMV</scp> and mycobacterial antibody levels: a crossâ€sectional study in a rural Ugandan cohort. Tropical Medicine and International Health, 2019, 24, 247-257.	2.3	8
24	Tools for Assessing the Protective Efficacy of TB Vaccines in Humans: in vitro Mycobacterial Growth Inhibition Predicts Outcome of in vivo Mycobacterial Infection. Frontiers in Immunology, 2019, 10, 2983.	4.8	24
25	Cytomegalovirus infection is a risk factor for tuberculosis disease in infants. JCI Insight, 2019, 4, .	5. 0	42
26	IMPACT-TB*: A Phase II Trial Assessing the Capacity of Low Dose Imatinib to Induce Myelopoiesis and Enhance Host Anti-Microbial Immunity Against Tuberculosis. *Imatinib Mesylate per Oral As a Clinical Therapeutic for TB. Blood, 2019, 134, 1050-1050.	1.4	7
27	Regulation of mycobacterial infection by macrophage Gch1 and tetrahydrobiopterin. Nature Communications, 2018, 9, 5409.	12.8	24
28	Glibenclamide Reduces Primary Human Monocyte Functions Against Tuberculosis Infection by Enhancing M2 Polarization. Frontiers in Immunology, 2018, 9, 2109.	4.8	20
29	Using vaccine Immunostimulation/Immunodynamic modelling methods to inform vaccine dose decision-making. Npj Vaccines, 2018, 3, 36.	6.0	16
30	Progress and challenges in TB vaccine development. F1000Research, 2018, 7, 199.	1.6	93
31	Systems approaches to correlates of protection and progression to TB disease. Seminars in Immunology, 2018, 39, 81-87.	5.6	14
32	World TB Day 2018: The Challenge of Drug Resistant Tuberculosis. F1000Research, 2018, 7, 217.	1.6	7
33	The convergent epidemiology of tuberculosis and human cytomegalovirus infection. F1000Research, 2018, 7, 280.	1.6	19
34	The convergent epidemiology of tuberculosis and human cytomegalovirus infection. F1000Research, 2018, 7, 280.	1.6	31
35	High monocyte to lymphocyte ratio is associated with impaired protection after subcutaneous administration of BCG in a mouse model of tuberculosis. F1000Research, 2018, 7, 296.	1.6	8
36	High monocyte to lymphocyte ratio is associated with impaired protection after subcutaneous administration of BCG in a mouse model of tuberculosis. F1000Research, 2018, 7, 296.	1.6	12

#	Article	IF	CITATIONS
37	VALIDATE: Exploiting the synergy between complex intracellular pathogens to expedite vaccine research and development for tuberculosis, leishmaniasis, melioidosis and leprosy. F1000Research, 2018, 7, 485.	1.6	2
38	Human cytomegalovirus epidemiology and relationship to tuberculosis and cardiovascular disease risk factors in a rural Ugandan cohort. PLoS ONE, 2018, 13, e0192086.	2.5	30
39	Social determinants and BCG efficacy: a call for a socio-biological approach to TB prevention. F1000Research, 2018, 7, 224.	1.6	3
40	Using Data from Macaques To Predict Gamma Interferon Responses after Mycobacterium bovis BCG Vaccination in Humans: a Proof-of-Concept Study of Immunostimulation/Immunodynamic Modeling Methods. Vaccine Journal, 2017, 24, .	3.1	7
41	Human Immunology of Tuberculosis. Microbiology Spectrum, 2017, 5, .	3.0	101
42	Serial QuantiFERON testing and tuberculosis disease risk among young children: an observational cohort study. Lancet Respiratory Medicine, the, 2017, 5, 282-290.	10.7	110
43	The influence of haemoglobin and iron on in vitro mycobacterial growth inhibition assays. Scientific Reports, 2017, 7, 43478.	3.3	39
44	The Cross-Species Mycobacterial Growth Inhibition Assay (MGIA) Project, 2010–2014. Vaccine Journal, 2017, 24, .	3.1	41
45	Human Immunology of Tuberculosis. , 2017, , 213-237.		6
46	The TB vaccine H56+IC31 dose-response curve is peaked not saturating: Data generation for new mathematical modelling methods to inform vaccine dose decisions. Vaccine, 2016, 34, 6285-6291.	3.8	22
47	Association of Human Antibodies to Arabinomannan With Enhanced Mycobacterial Opsonophagocytosis and Intracellular Growth Reduction. Journal of Infectious Diseases, 2016, 214, 300-310.	4.0	110
48	Sleeping Beauty and the Story of the Bacille Calmette-Guérin Vaccine. MBio, 2016, 7, .	4.1	12
49	Investments in tuberculosis research – what are the gaps?. BMC Medicine, 2016, 14, 123.	5.5	13
50	In vitro mycobacterial growth inhibition assays: A tool for the assessment of protective immunity and evaluation of tuberculosis vaccine efficacy. Vaccine, 2016, 34, 4656-4665.	3.8	61
51	Human newborn bacille Calmette–Guérin vaccination and risk of tuberculosis disease: a case-control study. BMC Medicine, 2016, 14, 76.	5. 5	55
52	Polyfunctional CD4 T-cells correlate with in vitro mycobacterial growth inhibition following Mycobacterium bovis BCG-vaccination of infants. Vaccine, 2016, 34, 5298-5305.	3.8	67
53	T-cell activation is an immune correlate of risk in BCG vaccinated infants. Nature Communications, 2016, 7, 11290.	12.8	236
54	A new tool for tuberculosis vaccine screening: Ex vivo Mycobacterial Growth Inhibition Assay indicates BCG-mediated protection in a murine model of tuberculosis. BMC Infectious Diseases, 2016, 16, 412.	2.9	27

#	Article	IF	CITATIONS
55	World TB Day 2016: an interview with leading experts in tuberculosis research. BMC Medicine, 2016, 14, 55.	5.5	2
56	TB vaccine development and the End TB Strategy: importance and current status. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 212-218.	1.8	67
57	Uniting to end the TB epidemic: advances in disease control from prevention to better diagnosis and treatment. BMC Medicine, 2016, 14, 47.	5 . 5	10
58	Human biomarkers: can they help us to develop a new tuberculosis vaccine?. Future Microbiology, 2016, 11, 781-787.	2.0	9
59	Systematic tracking of altered haematopoiesis during sporozoite-mediated malaria development reveals multiple response points. Open Biology, 2016, 6, 160038.	3.6	16
60	Individual-level factors associated with variation in mycobacterial-specific immune response: Gender and previous BCG vaccination status. Tuberculosis, 2016, 96, 37-43.	1.9	6
61	Distinct Transcriptional and Anti-Mycobacterial Profiles of Peripheral Blood Monocytes Dependent on the Ratio of Monocytes: Lymphocytes. EBioMedicine, 2015, 2, 1619-1626.	6.1	61
62	Intracellular Cytokine Staining and Flow Cytometry: Considerations for Application in Clinical Trials of Novel Tuberculosis Vaccines. PLoS ONE, 2015, 10, e0138042.	2.5	71
63	Big Data in Vaccinology: Introduction and section summaries. Vaccine, 2015, 33, 5237-5240.	3.8	2
64	Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines. Clinical Infectious Diseases, 2015, 61, S102-S118.	5.8	74
65	Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model. Vaccine, 2015, 33, 5321-5331.	3.8	35
66	Profiling the host immune response to tuberculosis vaccines. Vaccine, 2015, 33, 5313-5315.	3.8	11
67	Profiling the host response to malaria vaccination and malaria challenge. Vaccine, 2015, 33, 5316-5320.	3.8	21
68	Gene Expression and Cytokine Profile Correlate With Mycobacterial Growth in a Human BCG Challenge Model. Journal of Infectious Diseases, 2015, 211, 1499-1509.	4.0	36
69	T-Cell Responses Are Associated with Survival in Acute Melioidosis Patients. PLoS Neglected Tropical Diseases, 2015, 9, e0004152.	3.0	69
70	Process of Assay Selection and Optimization for the Study of Case and Control Samples from a Phase IIb Efficacy Trial of a Candidate Tuberculosis Vaccine, MVA85A. Vaccine Journal, 2014, 21, 1005-1011.	3.1	15
71	Serum indoleamine 2,3-dioxygenase activity is associated with reduced immunogenicity following vaccination with MVA85A. BMC Infectious Diseases, 2014, 14, 660.	2.9	20
72	Brief Report. Journal of Acquired Immune Deficiency Syndromes (1999), 2014, 67, 573-575.	2.1	36

#	Article	IF	Citations
73	Ratio of Monocytes to Lymphocytes in Peripheral Blood Identifies Adults at Risk of Incident Tuberculosis Among HIV-Infected Adults Initiating Antiretroviral Therapy. Journal of Infectious Diseases, 2014, 209, 500-509.	4.0	99
74	Evaluation of a Human BCG Challenge Model to Assess Antimycobacterial Immunity Induced by BCG and a Candidate Tuberculosis Vaccine, MVA85A, Alone and in Combination. Journal of Infectious Diseases, 2014, 209, 1259-1268.	4.0	73
75	TRANSVAC workshop on standardisation and harmonisation of analytical platforms for HIV, TB and malaria vaccines: †How can big data help?'. Vaccine, 2014, 32, 4365-4368.	3.8	4
76	Inflammatory and myeloid-associated gene expression before and one day after infant vaccination with MVA85A correlates with induction of a T cell response. BMC Infectious Diseases, 2014, 14, 314.	2.9	24
77	The association between the ratio of monocytes:lymphocytes at age 3Âmonths and risk of tuberculosis (TB) in the first two years of life. BMC Medicine, 2014, 12, 120.	5.5	80
78	Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M.Âtb). Tuberculosis, 2013, 93, 551-557.	1.9	45
79	Inhibition of Mycobacterial Growth <i>In Vitro</i> following Primary but Not Secondary Vaccination with Mycobacterium bovis BCG. Vaccine Journal, 2013, 20, 1683-1689.	3.1	85
80	Peripheral blood monocyte-to-lymphocyte ratio at study enrollment predicts efficacy of the RTS,S malaria vaccine: analysis of pooled phase II clinical trial data. BMC Medicine, 2013, 11, 184.	5.5	39
81	Comparing the safety and immunogenicity of a candidate TB vaccine MVA85A administered by intramuscular and intradermal delivery. Vaccine, 2013, 31, 1026-1033.	3.8	47
82	The Ratio of Monocytes to Lymphocytes in Peripheral Blood Correlates with Increased Susceptibility to Clinical Malaria in Kenyan Children. PLoS ONE, 2013, 8, e57320.	2.5	49
83	Roles for Treg Expansion and HMGB1 Signaling through the TLR1-2-6 Axis in Determining the Magnitude of the Antigen-Specific Immune Response to MVA85A. PLoS ONE, 2013, 8, e67922.	2.5	27
84	A Helicopter Perspective on TB Biomarkers: Pathway and Process Based Analysis of Gene Expression Data Provides New Insight into TB Pathogenesis. PLoS ONE, 2013, 8, e73230.	2.5	86
85	Cholera Toxin Enhances Vaccine-Induced Protection against Mycobacterium Tuberculosis Challenge in Mice. PLoS ONE, 2013, 8, e78312.	2.5	20
86	Single Nucleotide Polymorphisms in the Toll-Like Receptor 3 and CD44 Genes Are Associated with Persistence of Vaccine-Induced Immunity to the Serogroup C Meningococcal Conjugate Vaccine. Vaccine Journal, 2012, 19, 295-303.	3.1	17
87	Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults. Vaccine, 2012, 30, 5616-5624.	3.8	40
88	A Molecular Assay for Sensitive Detection of Pathogen-Specific T-Cells. PLoS ONE, 2011, 6, e20606.	2.5	28
89	Th1/Th17 Cell Induction and Corresponding Reduction in ATP Consumption following Vaccination with the Novel Mycobacterium tuberculosis Vaccine MVA85A. PLoS ONE, 2011, 6, e23463.	2.5	39
90	A Phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ Open, 2011 , 1 , $e000223$ - $e000223$.	1.9	42

#	Article	IF	Citations
91	Investigating the Induction of Vaccine-Induced Th17 and Regulatory T Cells in Healthy, <i>Mycobacterium bovis </i> BCG Immunized Adults Vaccinated with a New Tuberculosis Vaccine, MVA85A. Vaccine Journal, 2011, 18, 696-696.	3.1	0
92	Potent CD8+ T-Cell Immunogenicity in Humans of a Novel Heterosubtypic Influenza A Vaccine, MVA-NP+M1. Clinical Infectious Diseases, 2011, 52, 1-7.	5.8	424
93	Investigating the Induction of Vaccine-Induced Th17 and Regulatory T Cells in Healthy, <i>Mycobacterium bovis </i> BCG-Immunized Adults Vaccinated with a New Tuberculosis Vaccine, MVA85A. Vaccine Journal, 2010, 17, 1066-1073.	3.1	50
94	Evaluation of the Prognostic Value of IFN-Î ³ Release Assay and Tuberculin Skin Test in Household Contacts of Infectious Tuberculosis Cases in Senegal. PLoS ONE, 2010, 5, e10508.	2.5	51
95	MIG and the Regulatory Cytokines IL-10 and TGF- \hat{l}^21 Correlate with Malaria Vaccine Immunogenicity and Efficacy. PLoS ONE, 2010, 5, e12557.	2.5	16
96	Quantitative PCR Evaluation of Cellular Immune Responses in Kenyan Children Vaccinated with a Candidate Malaria Vaccine. PLoS ONE, 2009, 4, e8434.	2.5	8
97	MIG (CXCL9) is a more sensitive measure than IFN- \hat{l}^3 of vaccine induced T-cell responses in volunteers receiving investigated malaria vaccines. Journal of Immunological Methods, 2009, 340, 33-41.	1.4	26
98	A New Vaccine for Tuberculosis: The Challenges of Development and Deployment. Journal of Bioethical Inquiry, 2009, 6, 219-228.	1.5	9
99	Transcriptional profiling of mycobacterial antigen-induced responses in infants vaccinated with BCG at birth. BMC Medical Genomics, 2009, 2, 10.	1.5	32
100	Comparing human T cell and NK cell responses in viral-based malaria vaccine trials. Vaccine, 2009, 28, 21-27.	3.8	15
101	Safety and Immunogenicity of Boosting BCG Vaccinated Subjects with BCG: Comparison with Boosting with a New TB Vaccine, MVA85A. PLoS ONE, 2009, 4, e5934.	2.5	61
102	A New Vaccine for Tuberculosis: The Challenges of Development and Deployment., 2009,, 63-72.		0
103	A comparison of IFNÎ ³ detection methods used in tuberculosis vaccine trials. Tuberculosis, 2008, 88, 631-640.	1.9	47
104	Boosting BCG vaccination with MVA85A down-regulates the immunoregulatory cytokine TGF-Î ² 1. Vaccine, 2008, 26, 5269-5275.	3.8	23
105	Safety and Immunogenicity of a New Tuberculosis Vaccine, MVA85A, in Healthy Adults in South Africa. Journal of Infectious Diseases, 2008, 198, 544-552.	4.0	155
106	Sensitivity of IFN- \hat{I}^3 Release Assay to Detect Latent Tuberculosis Infection Is Retained in HIV-Infected Patients but Dependent on HIV/AIDS Progression. PLoS ONE, 2008, 3, e1441.	2.5	69
107	Immunological Outcomes of New Tuberculosis Vaccine Trials: WHO Panel Recommendations. PLoS Medicine, 2008, 5, e145.	8.4	82
108	Safety and Immunogenicity of the Candidate Tuberculosis Vaccine MVA85A in West Africa. PLoS ONE, 2008, 3, e2921.	2.5	45

#	Article	IF	CITATIONS
109	Correlates of Immune Protection from Tuberculosis. Current Molecular Medicine, 2007, 7, 319-325.	1.3	61
110	Boosting BCG with Recombinant Modified Vaccinia Ankara Expressing Antigen 85A: Different Boosting Intervals and Implications for Efficacy Trials. PLoS ONE, 2007, 2, e1052.	2.5	57
111	Early clinical trials with a new tuberculosis vaccine, MVA85A, in tuberculosis-endemic countries: issues in study design. Lancet Infectious Diseases, The, 2006, 6, 522-528.	9.1	55
112	Tuberculosis vaccines: current status and future prospects. Expert Opinion on Emerging Drugs, 2006, 11, 207-215.	2.4	9
113	Recognition of Stage-Specific Mycobacterial Antigens Differentiates between Acute and Latent Infections with Mycobacterium tuberculosis. Vaccine Journal, 2006, 13, 179-186.	3.1	174
114	Boosting BCG with MVA85A: the first candidate subunit vaccine for tuberculosis in clinical trials. Tuberculosis, 2005, 85, 47-52.	1.9	114
115	Upregulation of TGF- \hat{l}^2 , FOXP3, and CD4+CD25+ Regulatory T Cells Correlates with More Rapid Parasite Growth in Human Malaria Infection. Immunity, 2005, 23, 287-296.	14.3	328
116	Healthy Individuals That Control a Latent Infection with <i>Mycobacterium tuberculosis</i> Express High Levels of Th1 Cytokines and the IL-4 Antagonist IL-4δ2. Journal of Immunology, 2004, 172, 6938-6943.	0.8	160
117	Increased expression of mRNA encoding interleukin (IL)-4 and its splice variant IL-4delta2 in cells from contacts of Mycobacterium tuberculosis, in the absence of in vitro stimulation. Immunology, 2004, 112, 669-673.	4.4	65
118	Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nature Medicine, 2004, 10, 1240-1244.	30.7	538
119	Widespread occurrence of Mycobacterium tuberculosis DNA from 18th-19th century Hungarians. American Journal of Physical Anthropology, 2003, 120, 144-152.	2.1	105
120	Molecular analysis of Mycobacterium tuberculosis DNA from a family of 18th century Hungarians. Microbiology (United Kingdom), 2003, 149, 143-151.	1.8	79
121	Identification of Pneumocystis carinii DNA by polymerase chain reaction in necropsy lung samples from children dying of respiratory tract illnesses. Journal of Pediatrics, 2002, 140, 367-369.	1.8	16
122	The prospective evaluation of a nested polymerase chain reaction assay for the early detection of Aspergillus infection in patients with leukaemia or undergoing allograft treatment. British Journal of Haematology, 2002, 119, 720-725.	2.5	36
123	Identification of Pneumocystis carinii DNA in oropharyngeal mouth washes from AIDS children dying of respiratory illnesses. Aids, 2002, 16, 932-934.	2.2	8
124	Molecular epidemiology of tuberculosis: recent developments and applications. Current Opinion in Pulmonary Medicine, 2001, 7, 154-159.	2.6	11