Aleksei M Zheltikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2602462/publications.pdf

Version: 2024-02-01

691 papers 12,618 citations

52 h-index 69250 77 g-index

715 all docs

715 docs citations

715 times ranked 5685 citing authors

#	Article	IF	CITATIONS
1	Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature, 2016, 530, 66-70.	27.8	346
2	Generalized Nonlinear Schrödinger Equation for Dispersive Susceptibility and Permeability: Application to Negative Index Materials. Physical Review Letters, 2005, 95, 013902.	7.8	186
3	A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nature Communications, 2015, 6, 6117.	12.8	179
4	Title is missing!. Physics-Uspekhi, 2006, 49, 605.	2.2	152
5	Mapping the electron band structure by intraband high-harmonic generation in solids. Optica, 2017, 4, 516.	9.3	152
6	2022 Roadmap on integrated quantum photonics. JPhys Photonics, 2022, 4, 012501.	4.6	152
7	Mid-infrared laser filaments in the atmosphere. Scientific Reports, 2015, 5, 8368.	3.3	149
8	Free-space nitrogen gas laser driven by a femtosecond filament. Physical Review A, 2012, 86, .	2.5	148
9	Photonic-crystal fiber as a multifunctional optical sensor and sample collector. Optics Express, 2005, 13, 3454.	3.4	129
10	Soliton-based pump-seed synchronization for few-cycle OPCPA. Optics Express, 2005, 13, 6550.	3.4	129
11	Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases. Optics Express, 2012, 20, 24741.	3.4	128
12	Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk. Nature Communications, 2016, 7, 12877.	12.8	119
13	Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber. Optics Letters, 2003, 28, 1948.	3.3	111
14	Germanium-Vacancy Color Center in Diamond as a Temperature Sensor. ACS Photonics, 2018, 5, 765-770.	6.6	105
15	High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing. Laser Physics Letters, 2009, 6, 44-48.	1.4	101
16	Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations. Journal of Raman Spectroscopy, 2000, 31, 653-667.	2.5	95
17	Enhanced four-wave mixing in a hollow-core photonic-crystal fiber. Optics Letters, 2003, 28, 1448.	3.3	95
18	Tailoring the air plasma with a double laser pulse. Physics of Plasmas, 2011, 18, .	1.9	93

#	Article	IF	CITATIONS
19	Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers. Physical Review E, 2004, 70, 057601.	2.1	80
20	Nonlinear Optics of Photonic Crystals. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2046.	2.1	76
21	Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation. Optics Express, 2003, 11, 2440.	3.4	73
22	Saturation of third-harmonic generation in a plasma of self-induced optical breakdown due to the self-action of 80-fs light pulses. Optics Communications, 1997, 133, 587-595.	2.1	72
23	Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers. Applied Physics B: Lasers and Optics, 2001, 73, 181-184.	2.2	71
24	Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber. Optics Letters, 2012, 37, 2292.	3.3	71
25	Subterawatt few-cycle mid-infrared pulses from a single filament. Optica, 2016, 3, 299.	9.3	71
26	Enhanced χ^(3) interactions of unamplified femtosecond Cr:forsterite laser pulses in photonic-crystal fibers. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2183.	2.1	70
27	Optical Detection of Attosecond Ionization Induced by a Few-Cycle Laser Field in a Transparent Dielectric Material. Physical Review Letters, 2011, 106, 147401.	7.8	70
28	Nonlinear optics of microstructure fibers. Physics-Uspekhi, 2004, 47, 69-98.	2.2	68
29	Isolated Attosecond Pulses from Laser-Driven Synchrotron Radiation. Physical Review Letters, 2012, 109, 245005.	7.8	68
30	Time-domain spectroscopy in the mid-infrared. Scientific Reports, 2014, 4, 6670.	3.3	68
31	White light generation over three octaves by femtosecond filament at 39µm in argon. Optics Letters, 2012, 37, 3456.	3.3	67
32	Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow. Optics Communications, 1999, 159, 191-202.	2.1	65
33	Coherence brightened laser source for atmospheric remote sensing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15185-15190.	7.1	65
34	Half-cycle pulses in the mid-infrared from a two-color laser-induced filament. Applied Physics B: Lasers and Optics, 2014, 117, 611-619.	2.2	64
35	Ultrabroadband, coherent light source based on self-channeling of few-cycle pulses in helium. Optics Letters, 2008, 33, 1407.	3.3	63
36	Time-resolved coherent anti-Stokes Raman scattering with a femtosecond soliton output of a photonic-crystal fiber. Optics Letters, 2006, 31, 2323.	3.3	62

3

#	Article	IF	CITATIONS
37	Multioctave, 3–18  μm sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid. Optics Letters, 2015, 40, 974.	3.3	62
38	Highly efficient frequency tripling of laser radiation in a low-temperature laser-produced gaseous plasma. Journal of the Optical Society of America B: Optical Physics, 1991, 8, 363.	2.1	60
39	Soliton self-frequency shift decelerated by self-steepening. Optics Letters, 2008, 33, 1723.	3.3	58
40	Coherent four-wave mixing in excited and ionized gas media: four-photon spectrochronography, ellipsometry, and nonlinear-optical imaging of atoms and ions. Physics-Uspekhi, 1999, 42, 321-351.	2.2	57
41	Photonic bandgap materials and birefringent layers based on anisotropically nanostructured silicon. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2273.	2.1	57
42	Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre. Journal Physics D: Applied Physics, 2003, 36, 1375-1381.	2.8	57
43	Density of modes and tunneling times in finite one-dimensional photonic crystals: A comprehensive analysis. Physical Review E, 2004, 70, 016612.	2.1	56
44	Laser ablation of dental tissues with picosecond pulses of $106-\hat{l}\frac{1}{4}$ m radiation transmitted through a hollow-core photonic-crystal fiber. Applied Optics, 2004, 43, 2251.	2.1	56
45	Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber. Applied Physics B: Lasers and Optics, 2003, 76, 515-519.	2.2	55
46	Thermogenetic neurostimulation with single-cell resolution. Nature Communications, 2017, 8, 15362.	12.8	55
47	1.2- to 2.2-\$mu\$m Tunable Raman Soliton Source Based on a Cr : Forsterite Laser and a Photonic-Crystal Fiber. IEEE Photonics Technology Letters, 2008, 20, 900-902.	2.5	54
48	Third-harmonic generation in a laser-pre-excited gas: the role of excited-state neutrals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 271, 407-412.	2.1	53
49	Subexawatt few-cycle lightwave generation via multipetawatt pulse compression. Optics Communications, 2013, 291, 299-303.	2.1	53
50	Mid-infrared laser filamentation in molecular gases. Optics Letters, 2013, 38, 3194.	3.3	53
51	Phase matching of second-harmonic generation in birefringent porous silicon. Applied Physics B: Lasers and Optics, 2001, 73, 31-34.	2.2	52
52	Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics. Optics Letters, 2015, 40, 2068.	3.3	52
53	Femtosecond pulses in nanophotonics. Physics-Uspekhi, 2004, 47, 687-704.	2.2	51
54	Guiding radar signals by arrays of laser-induced filaments: finite-difference analysis. Applied Optics, 2007, 46, 5593.	2.1	51

#	Article	IF	CITATIONS
55	Mode-locked Yb-doped large-mode-area photonic crystal fiber laser operating in the vicinity of zero cavity dispersion. Laser Physics Letters, 2010, 7, 230-235.	1.4	51
56	Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity. Optics Letters, 2012, 37, 2268.	3.3	51
57	Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament. Optics Letters, 2015, 40, 2469.	3.3	51
58	Evolution of ultrashort light pulses in a two-level medium visualized with the finite-difference time domain technique. Optics Express, 2001, 8, 452.	3.4	50
59	Electron spin manipulation and readout through an optical fiber. Scientific Reports, 2014, 4, 5362.	3.3	50
60	Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber. Optics Express, 2004, 12, 1932.	3.4	49
61	Editorial: Supercontinuum generation. Applied Physics B: Lasers and Optics, 2003, 77, 143-147.	2.2	47
62	Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber. Physical Review A, 2004, 70, .	2.5	47
63	Two-octave spectral broadening of subnanojoule Cr:forsterite femtosecond laser pulses in tapered fibers. Applied Physics B: Lasers and Optics, 2002, 74, 307-311.	2.2	46
64	Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlinearity of optical fibers and photonic wires. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1100.	2.1	46
65	Tailoring the soliton output of a photonic crystal fiber for enhanced two-photon excited luminescence response from fluorescent protein biomarkers and neuron activity reporters. Optics Letters, 2009, 34, 3373.	3.3	45
66	Fiber-optic control and thermometry of single-cell thermosensation logic. Scientific Reports, 2015, 5, 15737.	3.3	45
67	CEP-stable tunable THz-emission originating from laser-waveform-controlled sub-cycle plasma-electron bursts. Optics Express, 2015, 23, 15278.	3.4	45
68	Extreme Raman red shift: ultrafast multimode nonlinear space-time dynamics, pulse compression, and broadly tunable frequency conversion. Optica, 2020, 7, 1349.	9.3	45
69	Chirp control in third-harmonic generation due to cross-phase modulation. Applied Physics B: Lasers and Optics, 1998, 67, 53-57.	2.2	44
70	Nanocrystal-size-sensitive third-harmonic generation in nanostructured silicon. Applied Physics B: Lasers and Optics, 2003, 76, 429-433.	2.2	44
71	The physical limit for the waveguide enhancement of nonlinear-optical processes. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 95, 410-415.	0.6	44
72	Title is missing!. Physics-Uspekhi, 2007, 50, 705.	2.2	44

#	Article	IF	Citations
73	Experimental and theoretical investigation of a multicolor filament. Physical Review A, 2009, 80, .	2.5	44
74	Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes. Applied Physics B: Lasers and Optics, 2003, 77, 299-305.	2.2	43
75	Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths. Physical Review A, 2008, 78, .	2.5	43
76	Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice. Scientific Reports, 2013, 3, 3265.	3.3	43
77	Fiber-based thermometry using optically detected magnetic resonance. Applied Physics Letters, 2014, 105, .	3.3	43
78	Solid-State Source of Subcycle Pulses in the Midinfrared. Physical Review Letters, 2016, 117, 043901.	7.8	43
79	Optical Detection of Tunneling Ionization. Physical Review Letters, 2010, 104, 163904.	7.8	42
80	Holey fibers. Physics-Uspekhi, 2000, 43, 1125-1136.	2.2	41
81	Frequency-tunable supercontinuum generation in photonic-crystal fibers by femtosecond pulses of an optical parametric amplifier. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2156.	2.1	41
82	Microstructure-fiber sources of mode-separable supercontinuum emission for wave-mixing spectroscopy. Journal of Raman Spectroscopy, 2002, 33, 888-895.	2.5	41
83	Frequency-shifted megawatt soliton output of a hollow photonic-crystal fiber for time-resolved coherent anti-Stokes Raman scattering microspectroscopy. Optics Letters, 2006, 31, 3318.	3.3	40
84	Fiber-optic magnetic-field imaging. Optics Letters, 2014, 39, 6954.	3.3	40
85	Quantum and Semiclassical Physics behind Ultrafast Optical Nonlinearity in the Midinfrared: The Role of Ionization Dynamics within the Field Half Cycle. Physical Review Letters, 2014, 113, 043901.	7.8	40
86	Ultraviolet-to-millimeter-band supercontinua driven by ultrashort mid-infrared laser pulses. Optica, 2020, 7, 15.	9.3	40
87	Waveguide modes of hollow photonic-crystal fibers. JETP Letters, 2002, 76, 341-345.	1.4	39
88	Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization. Journal of Applied Physics, 2011, 110, .	2.5	39
89	A hollow beam from a holey fiber. Optics Express, 2006, 14, 4128.	3.4	38
90	Field-Cycle-Resolved Photoionization in Solids. Physical Review Letters, 2014, 113, 133903.	7.8	38

#	Article	IF	CITATIONS
91	Neurophotonics: optical methods to study and control the brain. Physics-Uspekhi, 2015, 58, 345-364.	2.2	38
92	Four-wave mixing of picosecond pulses in hollow fibers: expanding the possibilities of gas-phase analysis. Applied Physics B: Lasers and Optics, 2001, 72, 575-582.	2.2	37
93	Second-harmonic generation in strongly scattering porous gallium phosphide. Applied Physics B: Lasers and Optics, 2004, 79, 225-228.	2.2	37
94	Widely tunable soliton frequency shifting of few-cycle laser pulses. Physical Review E, 2006, 74, 036617.	2.1	37
95	Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides. Applied Optics, 2008, 47, 474.	2.1	37
96	Route to Attosecond Nonlinear Spectroscopy. Physical Review Letters, 2010, 105, 243902.	7.8	37
97	Frequency-tunable sub-two-cycle 60-MW-peak-power free-space waveforms in the mid-infrared. Optics Letters, 2014, 39, 6430.	3.3	37
98	Self-compression of high-peak-power mid-infrared pulses in anomalously dispersive air. Optica, 2017, 4, 1405.	9.3	37
99	Ultrashort light pulses in hollow waveguides. Physics-Uspekhi, 2002, 45, 687-718.	2.2	36
100	Frequency?time and time?space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump?probe techniques. Applied Physics B: Lasers and Optics, 2003, 77, 369-376.	2.2	36
101	Femtosecond laser-induced cell fusion. Applied Physics Letters, 2008, 92, .	3.3	36
102	Long-lived laser-induced microwave plasma guides in the atmosphere: Self-consistent plasma-dynamic analysis and numerical simulations. Journal of Applied Physics, 2010, 108, 033113.	2.5	36
103	Waveguide modes of electromagnetic radiation in hollow-core microstructure and photonic-crystal fibers. Journal of Experimental and Theoretical Physics, 2003, 96, 857-869.	0.9	35
104	Negative refraction of ultra-short electromagnetic pulses. Applied Physics B: Lasers and Optics, 2005, 81, 393-402.	2.2	35
105	Mode-controlled colors from microstructure fibers. Optics Express, 2004, 12, 730.	3.4	34
106	Comparison of different methods for rigorous modeling of photonic crystal fibers. Optics Express, 2006, 14, 5699.	3.4	34
107	Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers. Physical Review A, 2007, 76, .	2.5	34
108	Ultrafast-laser-induced backward stimulated Raman scattering for tracing atmospheric gases. Optics Express, 2012, 20, 18784.	3.4	34

#	Article	IF	Citations
109	Strong-Field Photoionization as Excited-State Tunneling. Physical Review Letters, 2016, 116, 123901.	7.8	34
110	Enhancing sensitivity of lateral flow assay with application to SARS-CoV-2. Applied Physics Letters, 2020, 117, 120601.	3.3	34
111	Femtosecond optical harmonic generation as a non-linear spectroscopic probe for carbon nanotubes. Journal of Raman Spectroscopy, 2003, 34, 1018-1024.	2.5	33
112	Raman response function of atmospheric air. Optics Letters, 2007, 32, 2052.	3.3	33
113	High-throughput of single high-power laser pulses by hollow photonic band gap fibers. Laser Physics Letters, 2007, 4, 444-448.	1.4	33
114	Spectral narrowing of chirp-free light pulses in anomalously dispersive, highly nonlinear photonic-crystal fibers. Optics Express, 2008, 16, 2502.	3.4	33
115	Widely tunable 70-MHz near-infrared source of ultrashort pulses based on a mode-locked ytterbium laser and a photonic-crystal fiber. Laser Physics Letters, 2010, 7, 355-358.	1.4	33
116	Generation of supercontinuum compressible to single-cycle pulse widths in an ionizing gas. New Journal of Physics, 2008, 10, 093001.	2.9	32
117	Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber. Optics Letters, 2010, 35, 2326.	3.3	32
118	High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber. Optics Letters, 2016, 41, 472.	3.3	32
119	Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering microspectroscopy. Scientific Reports, 2018, 8, 9526.	3.3	32
120	Experimental demonstration of a photonic-crystal-fiber optical diode. Applied Physics B: Lasers and Optics, 2004, 78, 547-550.	2.2	31
121	Self-channeling of subgigawatt femtosecond laser pulses in a ground-state waveguide induced in the hollow core of a photonic crystal fiber. Optics Letters, 2004, 29, 1521.	3.3	31
122	The Raman effect in femto- and attosecond physics. Physics-Uspekhi, 2011, 54, 29-51.	2.2	31
123	Laser-induced filaments in the mid-infrared. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 092001.	1.5	31
124	Isolated waveguide modes of high-intensity light fields. Physics-Uspekhi, 2004, 47, 1205-1220.	2.2	30
125	Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm. Optics Communications, 2008, 281, 567-572.	2.1	30
126	lonization penalty in nonlinear Raman neuroimaging. Optics Letters, 2011, 36, 508.	3.3	30

#	Article	IF	Citations
127	Subcycle solitonic breathers. Physical Review A, 2014, 90, .	2.5	30
128	Pulse self-compression to single-cycle pulse widths a few decades above the self-focusing threshold. Physical Review A, 2016, 94, .	2.5	30
129	Third-harmonic generation with no signal at3ï‰. Physical Review A, 2005, 72, .	2.5	29
130	Post-filament self-trapping of ultrashort laser pulses. Optics Letters, 2014, 39, 4659.	3.3	29
131	Optical breakdown of solids by few-cycle laser pulses. Scientific Reports, 2018, 8, 1824.	3.3	29
132	Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap. JETP Letters, 1999, 69, 300-305.	1.4	28
133	Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers. Physical Review E, 2005, 72, 056603.	2.1	28
134	Third-harmonic generation by Raman-shifted solitons in a photonic-crystal fiber. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1975.	2.1	28
135	Ionization-induced effects in the soliton dynamics of high-peak-power femtosecond pulses in hollow photonic-crystal fibers. Physical Review A, 2007, 76, .	2.5	28
136	Spectral compression of frequency-shifting solitons in a photonic-crystal fiber. Optics Letters, 2009, 34, 662.	3.3	27
137	Powerful wavelength-tunable ultrashort solitons in a solid-core photonic-crystal fiber. Optics Letters, 2009, 34, 851.	3.3	27
138	Ionization penalty in nonlinear optical bioimaging. Physical Review E, 2010, 81, 051918.	2.1	27
139	Fiber-optic magnetometry with randomly oriented spins. Optics Letters, 2014, 39, 6755.	3.3	27
140	Fiber-optic electron-spin-resonance thermometry of single laser-activated neurons. Optics Letters, 2016, 41, 5563.	3.3	27
141	Room-temperature magnetic gradiometry with fiber-coupled nitrogen-vacancy centers in diamond. Optics Letters, 2015, 40, 3727.	3.3	26
142	Nonlinear dynamics of high-power ultrashort laser pulses: exaflop computations on a laboratory computer station and subcycle light bullets. Physics-Uspekhi, 2016, 59, 869-877.	2.2	26
143	Fiber-Optic Quantum Thermometry with Germanium-Vacancy Centers in Diamond. ACS Photonics, 2019, 6, 1690-1693.	6.6	26
144	Coherent Raman scattering in molecular hydrogen in a dc electric field. JETP Letters, 1999, 70, 375-379.	1.4	25

#	Article	IF	CITATIONS
145	Propagation and amplification of ultrashort light pulses in a resonant two-level medium: finite-difference time-domain analysis. Optics Communications, 2001, 193, 187-196.	2.1	25
146	Asymmetric spectral broadening and temporal evolution of cross-phase-modulated third-harmonic pulses. Optics Express, 2002, 10, 122.	3.4	25
147	Dispersion-free pulse propagation in a negative-index material. Optics Letters, 2005, 30, 1998.	3.3	25
148	Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber. Physical Review E, 2006, 73, 016610.	2.1	25
149	Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core. Optics Express, 2008, 16, 14987.	3.4	25
150	Title is missing!. Physics-Uspekhi, 2008, 51, 591.	2.2	25
151	Nonlinear-optical brain anatomy by harmonic-generation and coherent Raman microscopy on a compact femtosecond laser platform. Applied Physics Letters, 2011, 99, .	3.3	25
152	Generation of 0.3 mW high-power broadband terahertz pulses from GaP crystal pumped by negatively chirped femtosecond laser pulses. Laser Physics Letters, 2013, 10, 125404.	1.4	25
153	Quantum-controlled color: chirp- and polarization-sensitive two-photon photochromism of spiropyrans in the solid phase. Chemical Physics Letters, 2003, 381, 572-578.	2.6	24
154	Highly birefringent silicate glass photonic-crystal fiber with polarization-controlled frequency-shifted output: A promising fiber light source for nonlinear Raman microspectroscopy. Optics Express, 2006, 14, 10645.	3.4	24
155	Coherent Raman Umklappscattering. Laser Physics Letters, 2011, 8, 736-741.	1.4	24
156	Quantum technologies in Russia. Quantum Science and Technology, 2019, 4, 040501.	5 . 8	24
157	Diffuse optical harmonic generation in SiC nanopowder films: hunting scattered photons. Applied Physics B: Lasers and Optics, 2004, 78, 73-77.	2.2	23
158	Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers. Applied Physics B: Lasers and Optics, 2005, 81, 585-588.	2.2	23
159	Application of Terahertz Timeâ€Domain Spectroscopy in Intracellular Metabolite Detection. Journal of Biophotonics, 2010, 3, 641-645.	2.3	23
160	The generalized Sellmeier equation for air. Scientific Reports, 2017, 7, 46111.	3.3	23
161	Keldysh photoionization theory: through the barriers. Physics-Uspekhi, 2017, 60, 1087-1120.	2.2	23
162	Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances. Optics Letters, 2018, 43, 2185.	3.3	23

#	Article	IF	Citations
163	Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams. Journal of Raman Spectroscopy, 2001, 32, 960-970.	2.5	22
164	Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers. Applied Physics B: Lasers and Optics, 2003, 77, 313-317.	2.2	22
165	Second-and third-harmonic generation by carbon nanotubes irradiated with femtosecond laser pulses. Journal of Experimental and Theoretical Physics, 2004, 98, 220-226.	0.9	22
166	The friendly gas phase. Nature Materials, 2005, 4, 267-268.	27.5	22
167	Phase-matched four-wave mixing and sensing of water molecules by coherent anti-Stokes Raman scattering in large-core-area hollow photonic-crystal fibers. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2049.	2.1	22
168	Broadband Terahertz Pulses Generated by a Compact Femtosecond Photonic Crystal Fiber Amplifier. IEEE Photonics Technology Letters, 2010, 22, 814-816.	2.5	22
169	Photonic-crystal-fiber platform for multicolor multilabel neurophotonic studies. Applied Physics Letters, 2011, 98, .	3.3	22
170	Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields. Physics-Uspekhi, 2015, 58, 89-94.	2.2	22
171	Microwave-induced thermogenetic activation of single cells. Applied Physics Letters, 2015, 106, .	3.3	22
172	Angle-resolved multioctave supercontinua from mid-infrared laser filaments. Optics Letters, 2016, 41, 3479.	3.3	22
173	High-order harmonic generation from a solid-surface plasma by relativistic-intensity sub-100-fs mid-infrared pulses. Optics Letters, 2018, 43, 5571.	3.3	22
174	In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model. Redox Biology, 2021, 48, 102178.	9.0	22
175	Optimizing Two-Photon Three-Dimensional Data Storage in Photochromic Materials Using the Principles of Nonlinear Optics. Japanese Journal of Applied Physics, 1997, 36, 426-428.	1.5	21
176	High-resolution four-photon spectroscopy with chirped pulses. Quantum Electronics, 2000, 30, 606-610.	1.0	21
177	Time-resolved polarization-sensitive measurements of the electric field in a sliding discharge by means of dc field-induced coherent Raman scattering. Journal of Raman Spectroscopy, 2001, 32, 177-181.	2.5	21
178	Third-harmonic generation in focused beams as a method of 3D microscopy of a laser-produced plasma. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2001, 90, 778-783.	0.6	21
179	Efficient second-harmonic generation by scattering from porous gallium phosphide. JETP Letters, 2003, 78, 193-197.	1.4	21
180	Microstructure-fiber frequency converters. Laser Physics Letters, 2004, 1, 220-233.	1.4	21

#	Article	IF	Citations
181	Tunable supercontinuum generation in a high-index-step photonic-crystal fiber with a comma-shaped core. Optics Express, 2006, 14, 1942.	3.4	21
182	Nanoscale nonlinear optics in photonic-crystal fibres. Journal of Optics, 2006, 8, S47-S72.	1.5	21
183	X-SEA-F-SPIDER characterization of over octave spanning pulses in the infrared range. Optics Express, 2016, 24, 12713.	3.4	21
184	Supercontinuum generation in photonic-molecule modes of microstructure fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 665-674.	2.9	20
185	Generation of femtosecond anti-Stokes pulses through phase-matched parametric four-wave mixing in a photonic crystal fiber. Optics Letters, 2004, 29, 1545.	3.3	20
186	Multimode guided-wave non-3omega third-harmonic generation by ultrashort laser pulses. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2263.	2.1	20
187	Cross-phase-modulation-induced instability in photonic-crystal fibers. Physical Review E, 2005, 72, 027601.	2.1	20
188	Frequency-Tunable Multigigawatt Sub-Half-Cycle Light Pulses from Coupled-State Dynamics of Optical Solitons and Impulsively Driven Molecular Vibrations. Physical Review Letters, 2010, 105, 103901.	7.8	20
189	Guided-wave-coupled nitrogen vacancies in nanodiamond-doped photonic-crystal fibers. Applied Physics Letters, 2012, 101, 031106.	3.3	20
190	Attosecond Shock Waves. Physical Review Letters, 2013, 110, 183903.	7.8	20
191	In search of lost time: attosecond physics, petahertz optoelectronics, and quantum speed limit. Physics-Uspekhi, 2021, 64, 370-385.	2.2	20
192	Cell-specific three-photon-fluorescence brain imaging: neurons, astrocytes, and gliovascular interfaces. Optics Letters, 2020, 45, 836.	3.3	20
193	One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma. Optics Letters, 1999, 24, 478.	3.3	19
194	Three-dimensional microscopy of laser-produced plasmas using third-harmonic generation. Quantum Electronics, 2000, 30, 1080-1082.	1.0	19
195	Second- and third-harmonic generation as a local probe for nanocrystal-doped polymer materials with a suppressed optical breakdown threshold. Optics Communications, 2003, 224, 309-320.	2.1	19
196	Limiting of microjoule femtosecond pulses in air-guided modes of a hollow photonic-crystal fiber. Physical Review A, 2004, 70, .	2.5	19
197	Probing resonant nonlinearities in organic materials using photonic-crystal fiber frequency converters. Chemical Physics Letters, 2005, 405, 310-313.	2.6	19
198	Phase coherence control and subcycle transient detection in nonlinear Raman scattering with ultrashort laser pulses. Physical Review A, 2006, 74, .	2.5	19

#	Article	IF	Citations
199	Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber. Optics Communications, 2007, 280, 453-456.	2.1	19
200	Keldysh parameter, photoionization adiabaticity, and the tunneling time. Physical Review A, 2016, 94, .	2.5	19
201	Generating maximally-path-entangled number states in two spin ensembles coupled to a superconducting flux qubit. Physical Review A, 2018, 97, .	2.5	19
202	Coherent Four-Wave Mixing in a Laser-Preproduced Plasma: Optical Frequency Conversion and Two-Dimensional Mapping of Atoms And Ions. Journal of Nonlinear Optical Physics and Materials, 1997, 06, 387-410.	1.8	18
203	Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding. JETP Letters, 2000, 71, 281-284.	1.4	18
204	Nano-optical dimension of coherent anti-Stokes Raman scattering. Laser Physics Letters, 2004, 1, 468-472.	1.4	18
205	Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber. Optics Express, 2004, 12, 6129.	3.4	18
206	Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers. Optics Express, 2006, 14, 1189.	3.4	18
207	Coherent anti-Stokes Raman scattering microspectroscopy of silicon components with a photonic-crystal fiber frequency shifter. Optics Letters, 2007, 32, 3471.	3.3	18
208	Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber. Physical Review E, 2007, 75, 016614.	2.1	18
209	The figure of merit of a photonic-crystal fiber beam delivery and response-signal collection for nanoparticle-assisted sensor arrays. Laser Physics Letters, 2007, 4, 363-367.	1.4	18
210	Polarization-controlled dispersive wave redirection in dual-core photonic crystal fiber. Laser Physics, 2008, 18, 1420-1428.	1.2	18
211	Coherent anti-Stokes Raman metrology of phonons powered by photonic-crystal fibers. Optics Letters, 2010, 35, 919.	3.3	18
212	Hollow-fiber compression of 6 mJ pulses from a continuous-wave diode-pumped single-stage Yb,Na:CaF_2 chirped pulse amplifier. Optics Letters, 2011, 36, 1914.	3.3	18
213	Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers. Optics Letters, 2012, 37, 4642.	3.3	18
214	Optical and THz signatures of sub-cycle tunneling dynamics. Chemical Physics, 2013, 414, 92-99.	1.9	18
215	Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier. Applied Physics Letters, 2014, 104, 031117.	3.3	18
216	Temporal solitons in air. Physical Review A, 2017, 95, .	2.5	18

#	Article	IF	CITATIONS
217	Two―and threeâ€photon absorption crossâ€section characterization for highâ€brightness, cellâ€specific multiphoton fluorescence brain imaging. Journal of Biophotonics, 2020, 13, e201900243.	2.3	18
218	Multioctave supercontinua and subcycle lightwave electronics [Invited]. Journal of the Optical Society of America B: Optical Physics, 2019, 36, A168.	2.1	18
219	Self-and cross-phase modulation accompanying third-harmonic generation in a hollow waveguide. Journal of Experimental and Theoretical Physics, 1999, 88, 857-867.	0.9	17
220	Phase-matched third-harmonic generation in anisotropically nanostructured silicon. Journal of Experimental and Theoretical Physics, 2004, 99, 28-36.	0.9	17
221	Form birefringence of oxidized porous silicon. Applied Physics Letters, 2006, 88, 241113.	3.3	17
222	Nanomanagement of dispersion, nonlinearity, and gain of photonic-crystal fibers: qualitative arguments of the Gaussian-mode theory and nonperturbative numerical analysis. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1700.	2.1	17
223	Time-resolved coherent Raman and sum-frequency generation spectroscopy with wavelength-tunable, short-pulse, photonic-crystal fiber light sources. Journal of Raman Spectroscopy, 2007, 38, 1052-1063.	2.5	17
224	High-energy-throughput pulse compression by off-axis group-delay compensation in a laser-induced filament. Physical Review A, 2011, 84, .	2.5	17
225	Pulse-width-tunable 07  W mode-locked Cr: forsterite laser. Optics Letters, 2014, 39, 205.	3.3	17
226	Chirp-controlled filamentation and formation of light bullets in the mid-IR. Optics Letters, 2019, 44, 2173.	3.3	17
227	Self-phase modulation of submicrojoule femtosecond pulses in a hollow-core photonic-crystal fiber. Applied Physics Letters, 2004, 85, 3690-3692.	3.3	16
228	Assorted non-linear optics in microchannel waveguides of photonic-crystal fibers. Optics Communications, 2005, 255, 218-224.	2.1	16
229	Strong-field dressing of vibrational manifolds within ultrafast coherent Raman excitation. Journal of Raman Spectroscopy, 2007, 38, 998-1005.	2.5	16
230	Optical Detection of Interfering Pathways in Subfemtosecond Multielectron Dynamics. Physical Review Letters, 2009, 103, 033901.	7.8	16
231	Fiberâ€optic probes for <i>in vivo</i> depthâ€resolved neuronâ€activity mapping. Journal of Biophotonics, 2010, 3, 660-669.	2.3	16
232	Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber. Laser Physics Letters, 2010, 7, 46-49.	1.4	16
233	Multicolor in vivo brain imaging with a microscope-coupled fiber-bundle microprobe. Applied Physics Letters, 2012, 101, 233702.	3.3	16
234	Scaling laws for laser-induced filamentation. Physical Review A, 2014, 89, .	2.5	16

#	Article	IF	CITATIONS
235	Fiber-optic vectorial magnetic-field gradiometry by a spatiotemporal differential optical detection of magnetic resonance in nitrogen–vacancy centers in diamond. Optics Letters, 2016, 41, 2057.	3.3	16
236	Coherent anti-Stokes Raman scattering by excited ions in a laser plasma. Soviet Journal of Quantum Electronics, 1989, 19, 923-924.	0.1	15
237	Three-dimensional reversible laser micromachining with subnanojoule femtosecond pulses based on two-photon photochromism. Applied Physics B: Lasers and Optics, 2003, 76, 707-710.	2.2	15
238	Birefringence of guided modes in photonic wires: Gaussian-mode analysis. Optics Communications, 2005, 252, 78-83.	2.1	15
239	Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers. Optics Express, 2005, 13, 5947.	3.4	15
240	Radar return enhanced by a grating of species-selective multiphoton ionization as a probe for trace impurities in the atmosphere. Applied Physics B: Lasers and Optics, 2006, 83, 149-153.	2.2	15
241	Photonic-crystal-fiber solutions for ultrafast chromium forsterite laser technologies. Laser Physics Letters, 2007, 4, 775-800.	1.4	15
242	A sub-100fs self-starting Cr:forsterite laser generating 14W output power. Optics Express, 2010, 18, 24085.	3.4	15
243	Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery. Applied Physics Letters, 2012, 100, 101104.	3.3	15
244	Ultrabroadband XFROG of few-cycle mid-infrared pulses by four-wave mixing in a gas. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1901.	2.1	15
245	Stimulated fluorescence quenching in nitrogen–vacancy centers of diamond: temperature effects. Optics Letters, 2016, 41, 2077.	3.3	15
246	Relativistic Nonlinear Optical Phenomena in the Field of Subterawatt Laser Pulses. JETP Letters, 2020, 112, 17-23.	1.4	15
247	High-order harmonic analysis of anisotropic petahertz photocurrents in solids. Optics Letters, 2019, 44, 1888.	3.3	15
248	Chirp-controlled high-harmonic and attosecond-pulse generation via coherent-wake plasma emission driven by mid-infrared laser pulses. Optics Letters, 2020, 45, 750.	3.3	15
249	A fiber optic–nanophotonic approach to the detection of antibodies and viral particles of COVID-19. Nanophotonics, 2020, 10, 235-246.	6.0	15
250	Bragg resonance-enhanced coherent anti-Stokes Raman scattering in a planar photonic band-gap waveguide. Journal of Raman Spectroscopy, 2002, 33, 955-961.	2.5	14
251	J-aggregation visualized with two-photon-resonant third-harmonic generation. Journal of Raman Spectroscopy, 2003, 34, 1007-1012.	2.5	14
252	Doubly phase-matched cascaded parametric wave mixing of ultrashort laser pulses. JETP Letters, 2003, 77, 7-11.	1.4	14

#	Article	IF	CITATIONS
253	Hollow-core photonic-crystal fibres for laser dentistry. Physics in Medicine and Biology, 2004, 49, 1359-1368.	3.0	14
254	Gas- and condensed-phase sensing by coherent anti-Stokes Raman scattering in a mesoporous silica aerogel host. Chemical Physics Letters, 2004, 394, 1-4.	2.6	14
255	Phase-matched waveguide four-wave mixing scaled to higher peak powers with large-core-area hollow photonic-crystal fibers. Physical Review E, 2005, 71, 057603.	2.1	14
256	Linear and nonlinear optical anisotropy of amorphous oxidized silicon films induced by a network of pores. Physical Review B, 2006, 73, .	3.2	14
257	Nanomanaging dispersion, nonlinearity, and gain of photonic-crystal fibers. Applied Physics B: Lasers and Optics, 2006, 84, 69-74.	2.2	14
258	Diffraction-arrested soliton self-frequency shift of few-cycle laser pulses in a photonic-crystal fiber. Physical Review E, 2006, 73, 066617.	2.1	14
259	Controlled rotational Raman echo recurrences and modulation of high-intensity ultrashort laser pulses by molecular rotations in the gas phase. Optics Letters, 2007, 32, 1275.	3.3	14
260	Spectral interference of frequency-shifted solitons in a photonic-crystal fiber. Optics Letters, 2009, 34, 569.	3.3	14
261	Dark-field third-harmonic imaging. Applied Physics Letters, 2013, 103, .	3.3	14
262	High-resolution wide-field Raman imaging through a fiber bundle. Applied Physics Letters, 2013, 102, .	3.3	14
263	Self-focusing and spatial modes in free space and nonlinear waveguides. Physical Review A, 2013, 88, .	2.5	14
264	Pulse compression to subcycle field waveforms with split-dispersion cascaded hollow fibers. Optics Letters, 2013, 38, 4354.	3.3	14
265	Pulsed cooperative backward emissions from non-degenerate atomic transitions in sodium. New Journal of Physics, 2014, 16, 103017.	2.9	14
266	Ultrahigh-contrast imaging by temporally modulated stimulated emission depletion. Optics Letters, 2015, 40, 725.	3.3	14
267	Power-scalable subcycle pulses from laser filaments. Scientific Reports, 2017, 7, 36263.	3.3	14
268	Witnessing quantum entanglement in ensembles of nitrogen–vacancy centers coupled to a superconducting resonator. Optics Express, 2018, 26, 17849.	3.4	14
269	Birefringence-controlled anti-Stokes line emission from a microstructure fiber. Laser Physics Letters, 2004, 1, 299-302.	1.4	13
270	Anti-Stokes generation in guided modes of photonic-crystal fibers modified with an array of nanoholes. Laser Physics Letters, 2004, 1, 402-405.	1.4	13

#	Article	IF	CITATIONS
271	Limiting temporal and spectral resolution in spectroscopy and microscopy of coherent Raman scattering with chirped ultrashort laser pulses. Journal of Experimental and Theoretical Physics, 2005, 100, 833-843.	0.9	13
272	Ultrafast photonic-crystal fiber light flash for streak-camera fluorescence measurements. Optics Express, 2005, 13, 5682.	3.4	13
273	Wavelength-tunable ultrashort-pulse output of a photonic-crystal fiber designed to resolve ultrafast molecular dynamics. Optics Letters, 2006, 31, 3330.	3.3	13
274	Soliton self-frequency shift with diffraction-suppressed wavelength variance and timing jitter. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1882.	2.1	13
275	The role of phase-matching and nanocrystal-size effects in three-wave mixing and CARS processes in porous gallium phosphide. Applied Physics B: Lasers and Optics, 2006, 84, 303-308.	2.2	13
276	Perturbative analytical treatment of adiabatically moderated soliton self-frequency shift. Physical Review E, 2007, 75, 037603.	2.1	13
277	Signatures of attosecond electron tunneling dynamics in the evolution of intense few-cycle light pulses. Physical Review A, 2009, 80, .	2.5	13
278	Controllable two-color dispersive wave generation in argon-filled hypocycloid-core kagome fiber. Optics Express, 2017, 25, 32972.	3.4	13
279	Application of coherent four-wave mixing for two-dimensional mapping of the spatial distribution of excited atoms in a laser-produced plasma. Optics Communications, 1997, 140, 259-265.	2.1	12
280	Measurement of electric fields in a plasma with the aid of the coherent four-wave mixing polarisation technique. Quantum Electronics, 1999, 29, 73-76.	1.0	12
281	Near-field optics with photonic crystals. Applied Physics B: Lasers and Optics, 1999, 69, 497-500.	2.2	12
282	Phase and group synchronization in second-harmonic generation of ultrashort light pulses in one-dimensional photonic crystals. Journal of Experimental and Theoretical Physics, 2000, 91, 298-306.	0.9	12
283	Phase-matching solutions for high-order harmonic generation in hollow-core photonic-crystal fibers. Physical Review E, 2004, 70, 066619.	2.1	12
284	Microstructure fibers as frequency-tunable sources of ultrashort chirped pulses for coherent nonlinear spectroscopy. Applied Physics B: Lasers and Optics, 2004, 78, 565-567.	2.2	12
285	Phase-matched coherent anti-Stokes Raman scattering in isolated air-guided modes of hollow photonic-crystal fibers. Journal of Raman Spectroscopy, 2005, 36, 129-133.	2.5	12
286	Disorder-correlated enhancement of second-harmonic generation in strongly photonic porous gallium phosphide. Applied Physics B: Lasers and Optics, 2005, 81, 353-356.	2.2	12
287	Modification of cubic susceptibility tensor in birefringent porous silicon. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1673-1677.	1.8	12
288	Coherent Raman spectroscopy with frequency-shifted and shaped pulses from a photonic-crystal fiber. Chemical Physics Letters, 2006, 418, 19-23.	2.6	12

#	Article	IF	Citations
289	An analytical model of the rotational Raman response function of molecular gases. Journal of Raman Spectroscopy, 2008, 39, 756-765.	2.5	12
290	Ionization-assisted guided-wave pulse compression to extreme peak powers and single-cycle pulse widths in the mid-infrared. Optics Letters, 2010, 35, 3640.	3.3	12
291	Compact high-power multiwavelength photonic-crystal-fiber-based laser source of femtosecond pulses in the infrared–visible–ultraviolet range. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 2284.	2.1	12
292	Intense Cr:forsterite-laser-based supercontinuum source. Optics Letters, 2014, 39, 5562.	3.3	12
293	Long-wavelength infrared solitons in air. Optics Letters, 2017, 42, 3614.	3.3	12
294	All-Optical Brain Thermometry in Freely Moving Animals. ACS Photonics, 2020, 7, 3353-3360.	6.6	12
295	Background-free two-photon fluorescence readout via a three-photon charge-state modulation of nitrogen-vacancy centers in diamond. Optics Letters, 2019, 44, 3737.	3.3	12
296	Coherent Raman and hyper-Raman spectroscopy of excited and autoionizing states of atoms and ions in laser-produced and electric-discharge plasma. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1992, 14, 1003-1013.	0.4	11
297	Controlling dispersion and transmission spectra of hybrid resonant-gas-filled photonic-crystal optical components. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2000, 89, 282-286.	0.6	11
298	Coherent anti-Stokes Raman scattering of slow light in a hollow planar periodically corrugated waveguide. JETP Letters, 2002, 75, 66-70.	1.4	11
299	Phase-matched four-wave mixing of sub-100-TWâ^•cm2femtosecond laser pulses in isolated air-guided modes of a hollow photonic-crystal fiber. Physical Review E, 2004, 70, 066625.	2.1	11
300	Cross-phase-modulation-controlled spectral transformations of ultrashort pulses in photonic-crystal fibres. New Journal of Physics, 2004, 6, 182-182.	2.9	11
301	Raman-resonance-enhanced composite nonlinearity of air-guided modes in hollow photonic-crystal fibers. Optics Letters, 2006, 31, 2604.	3.3	11
302	Spectral transformation of femtosecond Cr:forsterite laser pulses in a flint-glass photonic-crystal fiber. Applied Optics, 2006, 45, 6823.	2.1	11
303	Spectral transformation of megawatt femtosecond optical pulses in large-mode-area high-index-step photonic-crystal fibers. Laser Physics Letters, 2007, 4, 529-533.	1.4	11
304	Supercontinuum generation through cascaded four-wave mixing in photonic-crystal fibers: When picoseconds do it better. Optics Communications, 2007, 274, 433-440.	2.1	11
305	Action-potential-encoded second-harmonic generation as an ultrafast local probe for nonintrusive membrane diagnostics. Physical Review E, 2010, 81, 031926.	2.1	11
306	Plasma-assisted coherent backscattering for standoff spectroscopy. Optics Letters, 2012, 37, 987.	3.3	11

#	Article	IF	CITATIONS
307	Enhancement of terahertz radiation from GaP emitters by subwavelength antireflective micropyramid structures. Optics Letters, 2013, 38, 2053.	3.3	11
308	Quantum stereomagnetometry with a dual-core photonic-crystal fiber. Applied Physics Letters, 2018, 113, .	3.3	11
309	A high-NOON output of harmonically driven cavity QED. Scientific Reports, 2019, 9, 16780.	3.3	11
310	Multisite cell―and neuralâ€dynamicsâ€resolving deep brain imaging in freely moving mice with implanted reconnectable fiber bundles. Journal of Biophotonics, 2020, 13, e202000081.	2.3	11
311	Stain-free subcellular-resolution astrocyte imaging using third-harmonic generation. Optics Letters, 2019, 44, 3166.	3 . 3	11
312	Localization and channeling of light in defect modes of two-dimensional photonic crystals. JETP Letters, 1999, 70, 323-328.	1.4	10
313	Pressure control of phase matching in high-order harmonic generation in hollow fibers filled with an absorbing weakly ionizing gas. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 811.	2.1	10
314	Announcement and call for papers Special issue: "Supercontinuum generation― Applied Physics B: Lasers and Optics, 2002, 75, 1-2.	2.2	10
315	Spectral broadening of 40-fs Ti:sapphire laser pulses in photonic-molecule modes of a cobweb-microstructure fiber. Applied Physics B: Lasers and Optics, 2002, 75, 621-627.	2.2	10
316	Analytical treatment of self-phase-modulation beyond the slowly varying envelope approximation. Physical Review A, 2004, 69, .	2.5	10
317	An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field. Applied Physics B: Lasers and Optics, 2004, 79, 805-809.	2.2	10
318	Effective-medium-controlled third-harmonic generation in lamellar-nonuniform porous glass. Optics Communications, 2004, 229, 397-402.	2.1	10
319	Enhanced soliton self-frequency shift of ultrashort light pulses. JETP Letters, 2005, 81, 487-490.	1.4	10
320	Polarization-sensitive non-31% third-harmonic generation by femtosecond Cr: Forsterite laser pulses in birefringent microchannel waveguides of photonic-crystal fibers. Applied Physics B: Lasers and Optics, 2005, 81, 219-223.	2.2	10
321	Pulse compression and multimegawatt optical solitons in hollow photonic-crystal fibers. Physical Review E, 2006, 73, 066618.	2.1	10
322	Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber. Optics Letters, 2008, 33, 977.	3.3	10
323	Plasma-blueshift spectral shear interferometry for characterization of ultimately short optical pulses. Optics Letters, 2009, 34, 82.	3.3	10
324	Hybrid multicore photonic-crystal fiber for in-phase supermode selection. Optics Letters, 2010, 35, 493.	3.3	10

#	Article	IF	Citations
325	Multicore photonic-crystal-fiber platform for high-power all-fiber ultrashort-pulse sources. Journal of Modern Optics, 2011, 58, 1966-1970.	1.3	10
326	Modeling high-peak-power few-cycle field waveform generation by optical parametric amplification in the long-wavelength infrared. Optics Express, 2016, 24, 23207.	3.4	10
327	Spatiotemporal modulation instability as off-axis parametric amplification: insights from the phase. Optics Express, 2016, 24, 20716.	3.4	10
328	Analytical insights into self-phase modulation: beyond the basic theory. Optics Express, 2018, 26, 17571.	3.4	10
329	Laser-driven tunneling photocurrent as a source of midinfrared to microwave multidecade supercontinua yoked to high-order harmonics. Physical Review A, 2020, 101, .	2.5	10
330	Coherently enhanced microwave pulses from midinfrared-driven laser plasmas. Optics Letters, 2021, 46, 1081.	3.3	10
331	Spin cat-state family for Heisenberg-limit metrology. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1021.	2.1	10
332	Optimisation of two-frequency optical data writing in photochromic materials based on the polarisation dependence of the two-photon absorption cross section. Quantum Electronics, 1996, 26, 848-852.	1.0	9
333	One-Dimensional Porous-Silicon Photonic Band-Gap Structures with Tunable Reflection and Dispersion. Physica Status Solidi A, 2000, 182, 437-442.	1.7	9
334	Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm. JETP Letters, 2000, 71, 489-492.	1.4	9
335	The mode structure and spectral properties of supercontinuum emission from microstructure fibers. Journal of Experimental and Theoretical Physics, 2002, 95, 851-860.	0.9	9
336	Soft-glass photonic-crystal fibers for frequency shifting and white-light spectral superbroadening of femtosecond Cr:forsterite laser pulses. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1471.	2.1	9
337	Perturbative and phase-transition-type modification of mode field profiles and dispersion of photonic-crystal fibers by arrays of nanosize air-hole defects. Optics Express, 2006, 14, 10878.	3.4	9
338	Dispersion and nonlinearity nanomanagement of highly nonlinear photonic-crystal fibers for the spectral transformation of Cr:forsterite laser pulses. Laser Physics Letters, 2006, 3, 301-305.	1.4	9
339	Dynamics of high-power self-similar light pulses in a fiber laser with a carbon-nanotube saturable absorber. Laser Physics, 2008, 18, 1459-1464.	1.2	9
340	Phase-matched four-wave mixing of guided and leaky modes in an optical fiber. Optics Letters, 2008, 33, 839.	3.3	9
341	Understanding the nonlinear phase and frequency shift of an ultrashort light pulse induced by an inertial third-order optical nonlinearity. Physical Review A, 2009, 79, .	2.5	9
342	New trends and recent advances in coherent Raman microscopy and nonlinear optical spectroscopy: introduction to the special issue. Journal of Raman Spectroscopy, 2009, 40, 712-713.	2.5	9

#	Article	IF	Citations
343	Ultrafast optical switching of an ionized medium by interfering ultrashort laser pulses. JETP Letters, 2009, 90, 90-95.	1.4	9
344	Enhancing the locality of optical interrogation with photonic-crystal fibers. Applied Physics Letters, 2012, 101, 021114.	3.3	9
345	Reconnectable fiberscopes for chronic in vivo deepâ€brain imaging. Journal of Biophotonics, 2018, 11, e201700106.	2.3	9
346	An ultraslim all-fiber microendoscope for depth-resolved imaging. Applied Physics Letters, 2018, 113 , .	3.3	9
347	Multioctave supercontinua from shock-coupled soliton self-compression. Physical Review A, 2019, 99, .	2.5	9
348	Photonic-Crystal-Fiber Quantum Probes for High-Resolution Thermal Imaging. Physical Review Applied, 2020, 13 , .	3.8	9
349	Compression of light pulses in photonic crystals. Quantum Electronics, 1998, 28, 861-866.	1.0	8
350	Data reading with the aid of one-photon and two-photon luminescence in three-dimensional optical memory devices based on photochromic materials. Quantum Electronics, 1998, 28, 547-554.	1.0	8
351	The influence of higher order waveguide modes on coherent four-wave mixing in hollow fibers. JETP Letters, 2001, 73, 263-267.	1.4	8
352	Spectral superbroadening of subnanojoule Cr:Forsterite femtosecond laser pulses in a tapered fiber. JETP Letters, 2001, 74, 460-463.	1.4	8
353	Localisation of light and spectral broadening of femtosecond laser pulses in a fibre with a minimal-microstructure cladding. Quantum Electronics, 2002, 32, 542-544.	1.0	8
354	Optical harmonic generation in hollow-core photonic-crystal fibres: analysis of optical losses and phase-matching conditions. Quantum Electronics, 2002, 32, 129-134.	1.0	8
355	Anomalous behavior of the second and third harmonics generated by femtosecond Cr:forsterite laser pulses in SiC-polymer nanocomposite materials as functions of the SiC nanopowder content. Journal of Raman Spectroscopy, 2003, 34, 999-1006.	2.5	8
356	Femtosecond two-photon-absorption-resonant four-wave mixing for time-resolved studies of photochromism in three dimensions. Chemical Physics Letters, 2003, 378, 630-637.	2.6	8
357	Large-core-area hollow photonic-crystal fibers. Laser Physics Letters, 2004, 1, 548-550.	1.4	8
358	Tuning the frequency of ultrashort laser pulses by a cross-phase-modulation-induced shift in a photonic crystal fiber. Optics Letters, 2005, 30, 1548.	3.3	8
359	Polarization- and mode-dependent anti-Stokes emission in a birefringent microstructure fiber. IEEE Photonics Technology Letters, 2005, 17, 630-632.	2.5	8
360	Wavelength-tunable parametric third-harmonic generation in a photonic-crystal fiber. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 571.	2.1	8

#	Article	IF	CITATIONS
361	Limiting efficiencies of second-harmonic generation and cascaded χ(2) processes in quadratically nonlinear photonic nanowires. Optics Communications, 2007, 270, 402-406.	2.1	8
362	Solitons evolving toward few-and single-cycle pulses in photonic-crystal fibers. Laser Physics, 2008, 18, 1416-1419.	1.2	8
363	All-photonic-crystal-fiber coherent black-light source. Optics Letters, 2010, 35, 3958.	3.3	8
364	Laser control of free-carrier density in solids through field-enhanced multiphonon tunneling recombination. Journal of Applied Physics, 2011, 109, 033109.	2.5	8
365	Fiber-optic Raman sensing of cell proliferation probes and molecular vibrations: Brain-imaging perspective. Applied Physics Letters, 2012, 101, .	3.3	8
366	Tunneling phase time in photoionization: in search of a clock. Optica, 2016, 3, 1201.	9.3	8
367	Threeâ€dimensional fiberâ€optic readout of singleâ€neuronâ€resolved fluorescence in living brain of transgenic mice. Journal of Biophotonics, 2017, 10, 775-779.	2.3	8
368	Quantitative cognitiveâ€test characterization of reconnectable implantable fiberâ€optic neurointerfaces for optogenetic neurostimulation. Journal of Biophotonics, 2017, 10, 1485-1491.	2.3	8
369	Twoâ€photon imaging of fiberâ€coupled neurons. Journal of Biophotonics, 2018, 11, e201600203.	2.3	8
370	Optical shock wave and photon-number conservation. Physical Review A, 2018, 98, .	2.5	8
371	Influence of the phase-matching conditions on the spectrum of four-photon light scattering at a one-photon resonance. Quantum Electronics, 1994, 24, 1102-1106.	1.0	7
372	Third-harmonic generation in a plasma formed by optical breakdown of air in the field of femtosecond laser pulses with high repetition rate. Quantum Electronics, 1996, 26, 283-284.	1.0	7
373	Two-dimensional photonic crystals with a lattice defect: Spectrum of defect modes, localization of light, and formation of evanescent waves. Journal of Experimental and Theoretical Physics, 2000, 90, 600-608.	0.9	7
374	Spectroscopic and quantum-control aspects of ultrashort-pulse synthesis through impulsive high-order stimulated Raman scattering. Journal of Raman Spectroscopy, 2002, 33, 112-120.	2.5	7
375	Femtosecond time-resolved two-photon absorption resonant four-wave mixing in three-dimensional spiropyran-PMMA samples. Journal of Raman Spectroscopy, 2003, 34, 1013-1017.	2.5	7
376	Electromagnetic field confined and tailored with a few air holes in a photonic-crystal fiber. Applied Physics B: Lasers and Optics, 2005, 81, 409-414.	2.2	7
377	Wavelength-tunable hollow-beam generation by a photonic-crystal fiber. Laser Physics Letters, 2006, 3, 306-309.	1.4	7
378	Frequency shifting and pulse shaping with photonic-crystal fibers for coherent nonlinear spectroscopy. Journal of Raman Spectroscopy, 2006, 37, 705-711.	2.5	7

#	Article	IF	CITATIONS
379	Soliton transients and supercontinuum generation in high-Raman-gain materials. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 137.	2.1	7
380	Weak-guidance-theory review of dispersion and birefringence management by laser inscription. Laser Physics Letters, 2008, 5, 11-20.	1.4	7
381	Modeling the action-potential-sensitive nonlinear-optical response of myelinated nerve fibers and short-term memory. Journal of Applied Physics, $2011,110,.$	2.5	7
382	Photonic-crystal-fiber-coupled photoluminescence interrogation of nitrogen vacancies in diamond nanoparticles. Laser Physics Letters, 2012, 9, 151-154.	1.4	7
383	The phase-controlled Raman effect. Scientific Reports, 2013, 3, 1842.	3.3	7
384	An all-photonic-crystal-fiber wavelength-tunable source of high-energy sub-100fs pulses. Optics Communications, 2013, 289, 123-126.	2.1	7
385	Asymptotically one-dimensional dynamics of high-peak-power ultrashort laser pulses. Journal of Optics (United Kingdom), 2016, 18, 115501.	2.2	7
386	Amplitude concentration in a phase-modulated spectrum due to femtosecond filamentation. Scientific Reports, 2017, 7, 43367.	3.3	7
387	Polarization and Spatial Mode Structure of Mid-Infrared-Driven Terahertz-to-Microwave Radiation. ACS Photonics, 2021, 8, 1988-1996.	6.6	7
388	Single-beam multimodal nonlinear-optical imaging of structurally complex events in cell-cycle dynamics. JPhys Photonics, 2021, 3, 044001.	4.6	7
389	Linear entropy of multiqutrit nonorthogonal states. Optics Express, 2019, 27, 8291.	3.4	7
390	High-energy self-mode-locked Cr:forsterite laser near the soliton blowup threshold. Optics Letters, 2020, 45, 1890.	3.3	7
391	Broadband terahertz generation by optical rectification of ultrashort multiterawatt laser pulses near the beam breakup threshold. Optics Letters, 2021, 46, 5866.	3.3	7
392	Line by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing. Journal of Raman Spectroscopy, 2000, 31, 677-687.	2.5	6
393	Constructing a light-field distribution for the laser guiding of atoms in photonic crystals. Optics Communications, 2000, 184, 391-396.	2.1	6
394	Ionization and absorption effects in high-order harmonic generation in gas-filled hollow fibers. Laser and Particle Beams, 2001, 19, 75-79.	1.0	6
395	Guiding high-intensity laser pulses through hollow fibers: self-phase modulation and cross-talk of guided modes. Optics Communications, 2003, 217, 169-177.	2.1	6
396	Self-phase modulation of femtosecond pulses in hollow photonic-crystal fibres. Quantum Electronics, 2004, 34, 56-58.	1.0	6

#	Article	IF	CITATIONS
397	Generation of the second and third harmonics of femtosecond Cr: forsterite laser pulses in SiC/PMMA nanopowder films. Laser Physics Letters, 2004, 1, 37-41.	1.4	6
398	Methods for Increasing the Efficiency of Nonlinear Optical Interactions in Nanostructured Semiconductors. Physics of the Solid State, 2005, 47, 159.	0.6	6
399	Self-compression of subgigawatt femtosecond laser pulses in a hollow photonic-crystal fiber. JETP Letters, 2005, 81, 58-61.	1.4	6
400	Diamond-shaped-core hollow photonic-crystal fiber. Laser Physics Letters, 2005, 2, 366-368.	1.4	6
401	Polarization-controlled vectorial spectral transformations of femtosecond pulses in a birefringent photonic-crystal fiber. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 986.	2.1	6
402	Toward all-fiber coherent anti-Stokes Raman scattering in the gas phase. Applied Physics B: Lasers and Optics, 2006, 83, 11-16.	2.2	6
403	Fiber-optic synthesizer of controlled sequences of ultrashort light pulses for single-beam coherent anti-Stokes Raman scattering microspectroscopy. JETP Letters, 2007, 85, 539-543.	1.4	6
404	Design rules for phase-matched terahertz surface electromagnetic wave generation by optical rectification in a nonlinear planar waveguide. Applied Optics, 2008, 47, 489.	2.1	6
405	Ultrafast multiplex broadband optical switching in the infrared with a fluorinated polymer. Laser Physics Letters, 2010, 7, 657-660.	1.4	6
406	Generation of 20 fs, 20 MW pulses in the near-infrared by pulse compression using a large-mode-area all-silica photonic band-gap fiber. Journal of Modern Optics, 2010, 57, 1867-1870.	1.3	6
407	All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter. Optics Communications, 2011, 284, 1652-1655.	2.1	6
408	Nonlinear-Optical Probe for Ultrafast Electron Dynamics: From Quantum Physics to Biosciences. IEEE Photonics Journal, 2011, 3, 255-258.	2.0	6
409	Filamentation-assisted self-compression of subpetawatt laser pulses to relativistic-intensity subcycle field waveforms. Physical Review A, 2012, 86, .	2.5	6
410	Figuration and detection of single molecules. Molecular Physics, 2012, 110, 1993-2000.	1.7	6
411	Generation of ultrashort pulses of electromagnetic radiation in the mid- and far-infrared ranges. JETP Letters, 2013, 98, 369-372.	1.4	6
412	Optical phase-space modes, self-focusing, and the wavelength as tunableħ. Physica Scripta, 2015, 90, 128003.	2.5	6
413	A compact laser platform for nonlinear Raman microspectroscopy: multimodality through broad chirp tunability. Journal of Raman Spectroscopy, 2016, 47, 1042-1048.	2.5	6
414	Electron band structure detection by high-order optical harmonic generation in solids. JETP Letters, 2016, 104, 449-452.	1.4	6

#	Article	IF	CITATIONS
415	Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses. Laser Physics Letters, 2016, 13, 065403.	1.4	6
416	Octave phase matching for optical parametric amplification of single-cycle pulses in the mid-infrared range. JETP Letters, 2016, 103, 167-170.	1.4	6
417	Polarization map of correlated sideband generation in vectorial four-wave mixing. Applied Physics Letters, 2017, 110, 181108.	3.3	6
418	Depth-resolved subcycle dynamics of photoionization in solids. Physical Review A, 2017, 96, .	2.5	6
419	Thermogenetic stimulation of single neocortical pyramidal neurons transfected with TRPV1-L channels. Neuroscience Letters, 2018, 687, 153-157.	2.1	6
420	Nonlinearâ€optical stainâ€free stereoimaging of astrocytes and gliovascular interfaces. Journal of Biophotonics, 2019, 12, e201800432.	2.3	6
421	Threeâ€photonâ€resonanceâ€enhanced thirdâ€harmonic generation for labelâ€free deepâ€brain imaging: In searc of a chemical contrast. Journal of Raman Spectroscopy, 2019, 50, 1296-1302.	ch 2.5	6
422	Relativistic electron bunches locked to attosecond optical field waveforms: an attosecond light–matter bound state. Laser Physics Letters, 2020, 17, 055401.	1.4	6
423	Optical beam shift as a vectorial pointer of curved-path geodesics: an evolution-operator perspective. Optics Express, 2020, 28, 12302.	3.4	6
424	Single-Cycle, Multigigawatt Carrier–Envelope-Phase-Tailored Near-to-Mid-Infrared Driver for Strong-Field Nonlinear Optics. ACS Photonics, 0, , .	6.6	6
425	Panoramic two-dimensional visualisation of the spatial distribution of the atomic and ionic components of a laser plasma by the method of coherent four-photon spectroscopy. Quantum Electronics, 1997, 27, 1119-1125.	1.0	5
426	Imaging of the spatial distribution of atoms in an optical-breakdown plasma with one-dimensional coherent hyper-Raman scattering. Quantum Electronics, 1998, 28, 1076-1081.	1.0	5
427	Waveguide solution of the Koroteev problem in the nonlinear optics of media with broken mirror symmetry: collinear three- and five-wave mixing schemes in planar waveguides. Quantum Electronics, 1999, 29, 607-612.	1.0	5
428	Frequency stabilisation of femtosecond frequency combs with a reference laser. Quantum Electronics, 2002, 32, 311-314.	1.0	5
429	Photonic-bandgap planar hollow waveguide. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 1162.	2.1	5
430	Third-harmonic generation as a local probe for on-line monitoring of femtosecond optical breakdown in transparent materials. Journal of Optics, 2003, 5, 362-366.	1.5	5
431	Frequency conversion of subnanojoule femtosecond pulses in microstructure fibers. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2004, 96, 575-579.	0.6	5
432	Theoretical introduction to nanoCARS: a local probing of nanocomposite materials with spectral profiles of coherent anti-Stokes Raman scattering. Journal of Raman Spectroscopy, 2005, 36, 176-182.	2.5	5

#	Article	IF	CITATIONS
433	Non-linear Raman spectroscopy 75 years after the Nobel Prize for the discovery of Raman scattering and 40 years after the first CARS experiments. Journal of Raman Spectroscopy, 2005, 36, 92-94.	2.5	5
434	Highly nonlinear photonic-crystal fibers for the spectral transformation of Cr: forsterite laser pulses. Optics Communications, 2006, 267, 505-510.	2.1	5
435	Spectroscopy of Raman-shifted solitons in photonic-crystal fibers. Journal of Raman Spectroscopy, 2006, 37, 416-420.	2.5	5
436	Optical nonlinearities of nanocomposite constituents selectively addressed by polarization-controlled coherent anti-Stokes Raman scattering. Journal of Raman Spectroscopy, 2006, 37, 663-668.	2.5	5
437	Influence of group-velocity mismatch and inertia of optical nonlinearity on slow-light effects in stimulated inelastic scattering of light. Physical Review A, 2007, 76, .	2.5	5
438	Pulse shaping by modulation instability in a photonic-crystal fiber for coherence control and single-beam coherent anti-Stokes Raman-scattering microspectroscopy. Laser Physics, 2008, 18, 1465-1478.	1.2	5
439	Parametric transformation and spectral shaping of supercontinuum by high-intensity femtosecond laser pulses. JETP Letters, 2008, 88, 157-159.	1.4	5
440	Two-dimensional coherent superposition of blue-shifted signals from an array of highly nonlinear waveguiding wires in a photonic-crystal fiber. Optics Express, 2008, 16, 11176.	3.4	5
441	Inertia of the bound-electron Kerr-type optical nonlinearity in transparent solids. Optics Communications, 2009, 282, 985-987.	2.1	5
442	Nanoparticles in a nanowaveguide: Enhanced-functionality optical systems based on micro- and nanowaveguide structures doped with nanoparticles. Nanotechnologies in Russia, 2010, 5, 266-270.	0.7	5
443	Nanobiophotonics: photons that shine their light on the life at the nanoscale. Journal of Biophotonics, 2010, 3, 639-640.	2.3	5
444	Ultrafast three-dimensional submicrometer-resolution readout of coherent optical-phonon oscillations with shaped unamplified laser pulses at 20 MHz. Optics Letters, 2012, 37, 1508.	3.3	5
445	Broadly wavelength- and pulse width-tunable high-repetition rate light pulses from soliton self-frequency shifting photonic crystal fiber integrated with a frequency doubling crystal. Optics Letters, 2012, 37, 3618.	3.3	5
446	Nonlinear-optical coherent combining of supercontinua from multiple filaments. Physical Review A, 2012, 86, .	2.5	5
447	Remote steering of laser beams by radar- and laser-induced refractive-index gradients in the atmosphere. Laser Physics Letters, 2012, 9, 68-72.	1.4	5
448	Intense, directional UV emission from molecular nitrogen ions in an adaptively controlled femtosecond filament. EPJ Web of Conferences, 2013, 41, 10004.	0.3	5
449	Advances in nonlinear optical spectroscopies: a historical perspective of developments and applications presented at ECONOS. Journal of Raman Spectroscopy, 2016, 47, 1111-1123.	2.5	5
450	Mapping anomalous dispersion of air with ultrashort mid-infrared pulses. Scientific Reports, 2017, 7, 2103.	3.3	5

#	Article	IF	CITATIONS
451	Phase matching as a gate for photon entanglement. Scientific Reports, 2017, 7, 46115.	3.3	5
452	Broadband quantum light on a fiber-optic platform: from biphotons and heralded single photons to bright squeezed vacuum. Laser Physics Letters, 2019, 16, 075401.	1.4	5
453	Ultrahigh-contrast cross-polarized entangled photon pairs from a strongly birefringent photonic-crystal fiber. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	5
454	Sub-half-cycle field transients from shock-wave-assisted soliton self-compression. Scientific Reports, 2020, 10, 12253.	3.3	5
455	Keldysh time bounds of laser-driven ionization dynamics. Optics Letters, 2021, 46, 989.	3.3	5
456	Laser-induced tunneling, the Kapitza effective potential, and the limits of perturbative nonlinear optics. Optics Express, 2019, 27, 8246.	3.4	5
457	Enhanced coherent transition radiation from midinfrared-laser-driven microplasmas. Scientific Reports, 2022, 12, 7660.	3.3	5
458	Local nondestructive data reading in three-dimensional memory systems based on the optical Kerr effect. Quantum Electronics, 1998, 28, 942-944.	1.0	4
459	Theory of Doppler-free spectroscopy with \hat{l} »-thick vapor cells. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 289, 207-212.	2.1	4
460	Group-velocity-matched ultrashort-pulse synthesis in a hollow fibre filled with a Raman-active gas. Quantum Electronics, 2001, 31, 471-476.	1.0	4
461	Spatial and spectral filtering of supercontinuum emission generated in microstructure fibres. Quantum Electronics, 2002, 32, 828-832.	1.0	4
462	Coherent control of acoustic vibrations in metal nanoparticles and thin films with sequences of femtosecond pulses: Harmonic-oscillator model. Optics and Spectroscopy (English Translation of) Tj ETQq0 0 0 0	gB ō. kOver	loek 10 Tf 50
463	Hollow-core photonic-crystal fibers optimized for four-wave mixing and coherent anti-Stokes Raman scattering. Journal of Raman Spectroscopy, 2003, 34, 688-692.	2.5	4
464	Mixing rules for group velocities in nanocomposite materials and photonic crystals. JETP Letters, 2004, 79, 57-61.	1.4	4
465	Femtosecond spectroscopy of coherent anti-Stokes Raman scattering with frequency-tunable chirped pulses generated in a microstructure fiber. Journal of Experimental and Theoretical Physics, 2004, 99, 19-27.	0.9	4
466	Mode-controlled spectral transformation of femtosecond laser pulses in microstructure fibers. Laser Physics Letters, 2004, 1, 199-204.	1.4	4
467	Polarization properties of optical harmonics generated by femtosecond Cr:forsterite laser pulses in SiC nanopowder films. Journal of Optics, 2004, 6, 253-258.	1.5	4
468	High-order modes of photonic wires excited by the Cherenkov emission of solitons. Laser Physics Letters, 2005, 2, 258-261.	1.4	4

#	Article	IF	Citations
469	Pulse-shaping control of spectral transformations of ultrashort pulses in photonic-crystal fibers. Laser Physics, 2006, 16, 957-959.	1.2	4
470	Pump-probe nonlinear absorption spectroscopy of molecular aggregates using chirped frequency-shifted light pulses from a photonic-crystal fiber. Laser Physics, 2006, 16, 965-969.	1.2	4
471	Dispersion and nonlinear phase-shift compensation in high-peak-power short-pulse fiber laser sources using photonic-crystal fibers. Laser Physics, 2008, 18, 1389-1399.	1.2	4
472	Coherent anti-Stokes Raman scattering of two-phonon complexes in diamond. Optics Express, 2009, 17, 20794.	3.4	4
473	Enhancement of guided-wave two-photon-excited luminescence response with a photonic-crystal fiber. Applied Optics, 2009, 48, 5274.	2.1	4
474	Probing the ultrafast nonlinear-optical response of ionized atmospheric air by polarization-resolved four-wave mixing. Physical Review A, 2009, 80, .	2.5	4
475	Blu-ray disk lens as the objective of a miniaturized two-photon fluorescence microscope. Optics Express, 2013, 21, 31604.	3.4	4
476	Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation. Applied Physics Letters, 2014, 104, .	3.3	4
477	All-fiber ultralow-energy soliton management at 1.55 Âμm. Laser Physics Letters, 2014, 11, 125801.	1.4	4
478	Multimodal nonlinear Raman microspectroscopy with ultrashort chirped laser pulses. JETP Letters, 2015, 101, 593-597.	1.4	4
479	The whither of bacteriophytochromeâ€based nearâ€infrared fluorescent proteins: Insights from twoâ€photon absorption spectroscopy. Journal of Biophotonics, 2019, 12, e201800353.	2.3	4
480	Photonic toolbox for fast real-time polymerase chain reaction. Laser Physics Letters, 2020, 17, 076202.	1.4	4
481	Enhancedâ€contrast twoâ€photon optogenetic <scp>pH</scp> sensing and <scp>pH</scp> â€resolved brain imaging. Journal of Biophotonics, 2021, 14, e202000301.	2.3	4
482	Enhancement of Plasma Nonlinearities and Generation of a Microwave–Terahertz Supercontinuum in the Field of Subterawatt Mid-Infrared Pulses. JETP Letters, 2021, 113, 301-307.	1.4	4
483	Singleâ€beam dualâ€color alternateâ€pathway twoâ€photon spectroscopy: Toward an optical toolbox for redox biology. Journal of Raman Spectroscopy, 2021, 52, 1552-1560.	2.5	4
484	Macroscopic tripartite entanglement of nitrogen-vacancy centers in diamond coupled to a superconducting resonator. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 443.	2.1	4
485	Free-beam spectral self-compression at supercritical peak powers. Optics Letters, 2018, 43, 5693.	3.3	4
486	Controlling light pulses and light beams with photonic band-gap structures. AIP Conference Proceedings, $2001, , .$	0.4	3

#	Article	IF	CITATIONS
487	Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro-and nanostructured fibers with a tunable photonic band gap. Journal of Experimental and Theoretical Physics, 2001, 93, 499-509.	0.9	3
488	Waveguiding properties and the spectrum of modes of hollow-core photonic-crystal fibres. Quantum Electronics, 2003, 33, 271-274.	1.0	3
489	Generation of radiation tunable between 350 and 600 nm and nonlinear-optical spectral transformation of femtosecond Cr:forsterite-laser pulses in submicron fused silica channels of a microstructure fibre. Quantum Electronics, 2003, 33, 989-992.	1.0	3
490	Spectrally and temporally isolated Raman soliton features in microstructure fibers visualized by cross-correlation frequency-resolved optical gating. Applied Physics B: Lasers and Optics, 2004, 79, 289-292.	2.2	3
491	An ideal nanocomposite for gas-phase sensing with coherent anti-Stokes Raman scattering. Optics Communications, 2005, 244, 461-467.	2.1	3
492	Temporal self-action and compression of intense ultrashort laser pulses in hollow photonic-crystal waveguides. Journal of Experimental and Theoretical Physics, 2005, 101, 1-10.	0.9	3
493	Experimental demonstration of nanoCARS: coherent anti-Stokes Raman scattering in mesoporous silica aerogels infiltrated with condensed- and gas-phase Raman-active materials. Journal of Raman Spectroscopy, 2005, 36, 171-175.	2.5	3
494	Cross-phase-modulation-induced instabilities and frequency shifts in a photonic-crystal fiber. Applied Physics B: Lasers and Optics, 2005, 80, 437-439.	2.2	3
495	Switching intense laser pulses guided by Kerr-effect-modified modes of a hollow-core photonic-crystal fiber. Physical Review E, 2005, 71, 026609.	2.1	3
496	All-optical pump-seed synchronization for few-cycle OPCPA., 2005,,.		3
497	Coherent anti-Stokes Raman scattering as a local probe for nanocomposite materials: theoretical introduction into nanoCARS. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 605.	2.1	3
498	Optical parametric amplification of a blueshifted output of a photonic-crystal fiber. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1988.	2.1	3
499	Dispersion and diffraction mechanisms suppressing soliton self-frequency shift in a medium with retarded optical nonlinearity. JETP Letters, 2006, 83, 54-57.	1.4	3
500	Soliton dynamics of megawatt ultrashort light pulses in a hollow photonic-crystal fiber: Effect of high-order dispersion and retarded nonlinearity. Laser Physics, 2006, 16, 970-980.	1.2	3
501	Wolfgang Kiefer. Journal of Raman Spectroscopy, 2006, 37, 1-19.	2.5	3
502	New developments in non-linear optical spectroscopy. Journal of Raman Spectroscopy, 2006, 37, 630-632.	2.5	3
503	Transmission Properties of Metallic Grating with Subwavelength Slits in THz Frequency Region. Active and Passive Electronic Components, 2007, 2007, 1-4.	0.3	3
504	Two-photon absorption-induced effects in femtosecond coherent anti-Stokes Raman-scattering microspectroscopy of silicon photonic components. Laser Physics, 2008, 18, 1411-1415.	1.2	3

#	Article	IF	Citations
505	Spectronanoscopy of photonic wires and supercontinuum generation by parametrically coupled Raman sidebands. Optics Letters, 2008, 33, 800.	3.3	3
506	Spectral broadening and compression to few-cycle pulse widths in the regime of soliton-self-frequency shift. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 946.	2.1	3
507	Subwavelength confinement of electromagnetic field by guided modes of dielectric micro- and nanowaveguides. JETP Letters, 2010, 91, 378-381.	1.4	3
508	Stimulated Raman amplification and high-order Raman sideband generation in a polymer waveguide on a printed circuit. Optics Letters, 2010, 35, 3976.	3.3	3
509	Fiber-probe detection for positron-emission-assisted Cherenkov-radiation brain mapping. Physical Review E, 2011, 84, 061902.	2.1	3
510	Polarization instability of ultrashort pulses as a source of vectorial supercontinuum. Optics Letters, 2012, 37, 5163.	3.3	3
511	Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption. Applied Physics Letters, 2012, 101, 091107.	3.3	3
512	Subcycle waveform generation by nonrecolliding tunneling electron wave packets. Physical Review A, 2014, 90, .	2.5	3
513	Quarter-cycle engineering of terahertz field waveforms. Laser Physics Letters, 2014, 11, 085404.	1.4	3
514	Modal analysis of kagome-lattice structures. Laser Physics Letters, 2015, 12, 055102.	1.4	3
515	Thermodynamic limitations on the temperature sensitivity of cell-membrane ion channels: Trouble with enthalpy uncertainty. Journal of Applied Physics, 2018, 123, 224701.	2.5	3
516	Intensity and wavelength scaling of laser-driven electron transition radiation: toward a table-top source of electromagnetic pulses. Laser Physics Letters, 2019, 16, 015401.	1.4	3
517	Singleâ€beam optogenetic multimodal χ (3) / χ (5) nonlinear microscopy and brain imaging. Journal of Raman Spectroscopy, 2020, 51, 1942-1950.	2.5	3
518	Thermogenetics as a New Direction in Controlling the Activity of Neural Networks. Neuroscience and Behavioral Physiology, 2020, 50, 1018-1023.	0.4	3
519	Analysis of intensity correlation enhanced plasmonic structured illumination microscopy. Optics Letters, 2021, 46, 1554.	3.3	3
520	The Dawn of Quantum Biophotonics. , 2016, , 147-176.		3
521	Wavelength beam combining by spectrally selective polarization transformation. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2842.	2.1	3
522	Subcycle terahertz field waveforms clocked by attosecond high-harmonic pulses from relativistic laser plasmas. Journal of Applied Physics, 2022, 131, .	2.5	3

#	Article	IF	Citations
523	Adaptive Wave-Front Shaping and Beam Focusing through Fiber Bundles for High-Resolution Bioimaging. Photonics, 2022, 9, 21.	2.0	3
524	Realâ€time fiberâ€optic recording of acuteâ€ischemicâ€stroke signatures. Journal of Biophotonics, 2022, 15, .	2.3	3
525	Two-dimensional mapping of the relative populations of the excited states of atoms and ions in a laser-produced plasma by the method of coherent four-wave mixing. Quantum Electronics, 1996, 26, 97-98.	1.0	2
526	Laser guiding of cold atoms in photonic crystals. Quantum Electronics, 2000, 30, 843-846.	1.0	2
527	Successive high-order harmonic generation in hollow fibres. Quantum Electronics, 2000, 30, 351-354.	1.0	2
528	Third-harmonic generation in the field of ultrashort laser pulses in leaky modes of a gas-filled hollow fibre. Quantum Electronics, 2001, 31, 173-178.	1.0	2
529	Preface to the special issue on non-linear Raman spectroscopy and related techniques. Journal of Raman Spectroscopy, 2002, 33, 842-843.	2.5	2
530	Light confinement and supercontinuum generation switching in photonic-molecule modes of a microstructure fiber. JETP Letters, 2002, 75, 304-308.	1.4	2
531	Frequency conversion of femtosecond Cr:forsterite-laser pulses in a tapered fibre. Quantum Electronics, 2003, 33, 317-320.	1.0	2
532	Transmission spectra and optical losses of infiltration-modified hollow photonic-crystal fibres. Quantum Electronics, 2005, 35, 839-843.	1.0	2
533	Photonic-crystal fiber sources for nonlinear spectroscopy. Vibrational Spectroscopy, 2006, 42, 33-40.	2.2	2
534	Photonic band-gap enhanced second-harmonic generation in a planar lithium niobate waveguide. Laser Physics, 2006, 16, 927-947.	1.2	2
535	Nonlinear frequency conversion in double core photonic crystal fibers. , 2007, , .		2
536	ECONOS in the epoch of CARS renaissance. Journal of Raman Spectroscopy, 2007, 38, 960-962.	2.5	2
537	Spectral-temporal properties and nonlinear-optical transformation of supercontinuum radiation with an energy over 1 $l\frac{1}{4}$ J generated by a large-mode-area photonic-crystal fiber. JETP Letters, 2007, 85, 231-235.	1.4	2
538	Dynamics of self-similar light pulses of limiting pulse width and energy in a fiber laser. Journal of Experimental and Theoretical Physics, 2008, 106, 597-603.	0.9	2
539	1.2–2.2-μm tunable raman soliton source based on a Cr:Forsterite-laser and a photonic-crystal fiber. , 2008, , .		2
540	Multisoliton supercontinuum from a photonic-crystal fibre as a source of frequency-tunable megawatt femtosecond pulses in the infrared. Quantum Electronics, 2009, 39, 634-637.	1.0	2

#	Article	lF	CITATIONS
541	Tailoring the Air Plasma with Double Laser Pulses. , 2011, , .		2
542	Signal contrast in coherent Raman scattering: Optical phonons versus biomolecules. Journal of Applied Physics, 2012, 112, 053101.	2. 5	2
543	Ultrafast nonlinear-optical metrology of specialty fibers: parallel multimode fiber dispersion tracing by cross-correlation frequency-resolved optical gating. Laser Physics Letters, 2012, 9, 39-43.	1.4	2
544	Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth-order nonlinearity. EPJ Web of Conferences, 2013, 41, 09007.	0.3	2
545	Multibeam synthesis of high-power subcycle field waveforms. Physical Review A, 2017, 96, .	2.5	2
546	Free-beam soliton self-compression in air. Journal of Optics (United Kingdom), 2018, 20, 025504.	2.2	2
547	Coherent Raman spectroscopy of solidâ€state broadband quantum memories. Journal of Raman Spectroscopy, 2018, 49, 1128-1135.	2.5	2
548	Laser filaments as pulsed antennas. Optics Letters, 2021, 46, 4984.	3.3	2
549	Perfect swap and transfer of arbitrary quantum states. Optics Communications, 2021, 496, 126870.	2.1	2
550	Optical Synchronization for OPCPA Chains. Springer Series in Optical Sciences, 2007, , 535-545.	0.7	2
551	Supercontinuum generation in large-mode-area photonic crystal fibers for coherent Raman microspectroscopy. , 2018, , .		2
552	Multi-millijoule Few-Optical-Cycle Pulses in Mid-IR: Scaling Power, Energy and Wavelength. , 2015, , .		2
553	A femtosecond Cr4+:forsterite laser generating 1.4W output power. , 2010, , .		2
554	250-GW Sub-Three-Cycle Multi-Millijoule Mid-IR Pulses Self-Compressed in a YAG plate. , 2015, , .		2
555	Light and corona: guided-wave readout for coronavirus spike protein–host-receptor binding. Optics Letters, 2020, 45, 5428.	3.3	2
556	Anomalous and near-zero group-velocity dispersion in the sub-THz and mm-band atmospheric windows. Optics Letters, 2019, 44, 3170.	3. 3	2
557	Ultrafast mid-infrared spectrochronography of dispersion near molecular absorption bands. Optics Letters, 2018, 43, 1327.	3 . 3	2
558	Nearâ€infraredâ€toâ€vacuumâ€ultraviolet highâ€harmonic Raman and plasma emission spectroscopy with ultrashort midâ€infrared laser pulses. Journal of Raman Spectroscopy, 2021, 52, 2089-2099.	2.5	2

#	Article	IF	CITATIONS
559	Quantum metrology with superposition spin coherent states: Insights from Fisher information. Physical Review A, 2021, 104, .	2.5	2
560	State-vector geometry and guided-wave physics behind optical super-resolution. Optics Letters, 2022, 47, 1586.	3.3	2
561	Broadband ultrawide-angle laser-plasma microwave antennas. Physical Review A, 2022, 105, .	2.5	2
562	Measurement of the Time Structure of the Field and Carrier Phase of Single-Cycle Near- and Mid-Infrared Pulses. JETP Letters, 2022, 115, 396-401.	1.4	2
563	Characteristics of the polarisation of a signal of four-photon scattering of light in an optical-breakdown plasma. Quantum Electronics, 1994, 24, 467-468.	1.0	1
564	Four-wave mixing of picosecond pulses in hollow fibers: Phase matching and the influence of high-order waveguide modes. Journal of Experimental and Theoretical Physics, 2001, 93, 247-255.	0.9	1
565	Controlled light localisation and nonlinear-optical interactions of short laser pulses in holey fibres. Quantum Electronics, 2001, 31, 387-390.	1.0	1
566	Four-wave mixing of picosecond pulses in hollow fibers: expanding the possibilities of gas-phase analysis. , $2001, , .$		1
567	Thel2/a4 theorem of waveguide CARS enhancement revised for hollow microstructure fibers. Journal of Raman Spectroscopy, 2003, 34, 677-683.	2.5	1
568	Preface to the second special issue on non-linear Raman spectroscopy and related techniques. Journal of Raman Spectroscopy, 2003, 34, 919-921.	2.5	1
569	Quantum control of two-photon photochromism in the solid phase. JETP Letters, 2003, 78, 246-249.	1.4	1
570	Envelope and phase evolution of femtosecond pulses in hollow photonic-crystal fibres. Quantum Electronics, 2004, 34, 51-55.	1.0	1
571	Femtosecond coherent anti-Stokes Raman scattering spectroscopy using frequency-tunable radiation generated in microstructure fibres. Quantum Electronics, 2004, 34, 473-476.	1.0	1
572	Phase-matched four-wave mixing of isolated waveguide modes of high-intensity femtosecond pulses in a hollow photonic-crystal fiber. JETP Letters, 2004, 79, 395-398.	1.4	1
573	Interference of scattered waves and mixing rules for group velocities in nanocomposite materials. Journal of Experimental and Theoretical Physics, 2004, 99, 37-42.	0.9	1
574	Nonlinear spectral shifts in multimode photonic-crystal fibers induced by femtosecond Cr:Forsterite oscillator. , 2005, , .		1
575	Porous gallium phosphide: challenging material for nonlinear-optical applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3248-3252.	0.8	1
576	Non \hat{l} » \hat{a} °4 wavelength dependence of rayleigh-scattering loss in waveguides. Laser Physics, 2006, 16, 960-964.	1.2	1

#	Article	lF	CITATIONS
577	Cross-phase-modulation-induced instability and efficient parametric frequency conversion of ultrashort light pulses. Journal of Experimental and Theoretical Physics, 2006, 102, 707-711.	0.9	1
578	High-peak-power nonlinear-optical processes in photonic crystal fibers. , 2006, , .		1
579	Axial spectral scans of polarization dependent third harmonic generation in a multimode photonic crystal fiber. Journal of the European Optical Society-Rapid Publications, 2007, 2, .	1.9	1
580	New developments in nonlinear spectroscopy: ECONOS meeting in St. Petersburg. Journal of Raman Spectroscopy, 2008, 39, 692-693.	2.5	1
581	Solitonic spectral transformations in double core photonic crystal fiber. Proceedings of SPIE, 2008, ,	0.8	1
582	Spectral and temporal analysis of ultrashort ultraviolet pulses generated by high-intensity laser radiation in the atmosphere. JETP Letters, 2009, 89, 170-173.	1.4	1
583	Highly refractive three-dimensional photonic crystals for optical sensing systems. Nanotechnologies in Russia, 2010, 5, 538-542.	0.7	1
584	Coherence readout from supercontinua in multiple filaments: Experiments and supercomputer simulations. Physical Review A, 2013, 87, .	2.5	1
585	Mid-Infrared femtosecond filament and three octaves continuum generation in gases. EPJ Web of Conferences, 2013, 41, 10003.	0.3	1
586	Strong field applications of Gigawatt self-compressed pulses from a Kagome fiber. , 2014, , .		1
587	Pulse-width considerations for nonlinear Raman brain imaging: whither the optimum?. Laser Physics Letters, 2015, 12, 115401.	1.4	1
588	New horizons of optics of the midinfrared spectral range. Optics and Spectroscopy (English) Tj ETQq0 0 0 rgBT /	Overlock 1	0 It 20 302 .
589	Defect guidance in kagome-clad fibers: the role of photonic band gaps and self-similarity of the lattice. Laser Physics Letters, 2017, 14, 015402.	1.4	1
590	Nonlinear optics in the mid-infrared: new morning. Journal of Physics: Conference Series, 2017, 793, 012019.	0.4	1
591	Enhanced-contrast optical readout in ultrafast broadband Raman quantum memories. Scientific Reports, 2018, 8, 13774.	3.3	1
592	Multi-mJ mid-IR light bullets in air. EPJ Web of Conferences, 2019, 205, 01004.	0.3	1
593	Development and applications of nonlinear optical spectroscopy: 17th ECONOS/37th ECW meeting in Milan (Italy). Journal of Raman Spectroscopy, 2019, 50, 1256-1259.	2.5	1
594	Entropy- and purity-tailored broadband entanglement from vectorial four-wave mixing: Insights from pulse modes and classical-field dynamics. Physical Review A, 2019, 100, .	2.5	1

#	Article	IF	CITATIONS
595	Physics behind laser thermogenetic neurostimulation. Journal of Applied Physics, 2019, 126, 233102.	2.5	1
596	Effect of Laser Radiation near 1.5 $\hat{A}\mu m$ on the Photoluminescence Parameters and the Ensemble of NV Centers in Diamond. JETP Letters, 2021, 113, 1-6.	1.4	1
597	Light-induced uncertainty and information limits of optical neural recording. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 251, 119351.	3.9	1
598	High-harmonic-driven inverse Raman scattering. Optics Letters, 2021, 46, 3219.	3.3	1
599	Natural and magnetically induced entanglement of hyperfine-structure states in atomic hydrogen. Physical Review A, 2021, 103, .	2.5	1
600	Lightwave engineering for on-site few-cycle pulse widths in high-peak-power laser–matter interaction optics. Optics Communications, 2022, 502, 127311.	2.1	1
601	EFFICIENT THIRD HARMONIC GENERATION AND FOUR-PHOTON MIXING SPECTROSCOPY OF LASER-PRODUCED PLASMAS NEAR METAL SURFACES. , 1989, , 252-254.		1
602	Phase-stable sub-single-cycle mid-infrared pulses generated through filamentation. , 2012, , .		1
603	Polarized coherent microwave supercontinua with a terawatt laser driver. Physical Review A, 2021, 104, .	2.5	1
604	Bremsstrahlung, transition, and Cherenkov radiation by laser filaments. Physical Review A, 2021, 104, .	2.5	1
605	Imaging through scattering: the Fisher information and the generalized Abbe limit. Optics Letters, 2021, 46, 5902-5905.	3.3	1
606	Plasma-Blue-Shift Spectral Shear Interferometry for Characterization of Ultimately short Optical Pulses. Springer Series in Chemical Physics, 2009, , 42-44.	0.2	1
607	Optical Mapping of Attosecond Ionization Dynamics by Few-Cycle Light Pulses. Springer Series in Chemical Physics, 2009, , 926-928.	0.2	1
608	Self-compression of sub-TW mid-IR pulses in transparent dielectrics and filaments generated in ambient air. , 2016, , .		1
609	Implantable gradedâ€index fibers for neuralâ€dynamicsâ€resolving brain imaging in awake mice on an airâ€lifted platform. Journal of Biophotonics, 0, , .	2.3	1
610	Nonlinear-optical imaging and tagging of atoms and molecules in plasmas and gas flows. , 0, , .		0
611	Light channeling and localization in defect modes of two-dimensional photonic band-gap structures. , 0, , .		O
612	Holey fibers with 0.4-32- \hat{l} /4m-pitch photonic band-gap cladding: fabrication, characterization, and nonlinear-optical applications. , 0, , .		0

#	Article	IF	Citations
613	Time-resolved polarization-sensitive measurements of the electric field in a sliding discharge by means of dc-field-induced coherent Raman scattering. , 0, , .		О
614	Two-octave spectral broadening of subnanojoule Cr:forsterite femtosecond laser pulses in tapered fibers. , 0, , .		0
615	Cross-phase-modulation and third-harmonic generation with unamplified femtosecond Cr:forsterite laser pulses in a microstructure fiber. , 0, , .		O
616	Four-wave mixing in hollow photonic-crystal fibers. JETP Letters, 2003, 77, 397-400.	1.4	0
617	Higher order waveguide modes and cladding aperiodicity effects in hollow photonic-crystal fibers. , 2003, , .		O
618	Third-harmonic and sum-frequency generation in a quadratically nonlinear polymer by time-ordered ultrashort laser pulses. JETP Letters, 2004, 80, 167-171.	1.4	0
619	Reduced quantum noise in waveguide coherent Raman scattering spectroscopy. JETP Letters, 2004, 80, 389-392.	1.4	0
620	<title>Waveguide nonlinear optics scaled to higher peak powers with large-core-area hollow photonic-crystal fibers</title> ., 2005, 5850, 75.		0
621	Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2005, 99, 131.	0.6	0
622	Nonlinear-optical spectral interferometry of nanostructures using coherent anti-Stokes Raman scattering. Quantum Electronics, 2005, 35, 97-101.	1.0	0
623	Dispersion-free propagation of ultrashort pulses in a negative index material. , 0, , .		O
624	Cross-phase-modulation-induced instabilities and frequency shifts of ultrashort laser pulses in a photonic-crystal fiber. , 0, , .		0
625	Passively synchronized multimillijoule optical parametric chirped pulse amplifier with a positive-dispersion sub-10-fs pulse compression. , 0, , .		0
626	Applications of photonic-crystal fibers in nonlinear spectroscopy. , 0, , .		0
627	Nonlinear-optical spectral transformations of a two-color short-pulse laser field in a photonic-crystal fiber. , 0, , .		0
628	Enhancement of nonlinear interactions due to the light localization phenomena in porous GaP., 0,,.		0
629	Modification of Nonlinear Susceptibilities in Anisotropically Nanostructured Silicon., 0,,.		0
630	<title>Form anisotrophy influence on properties of cubic susceptibility tensor in birefrigent porous silicon</title> ., 2005, 5850, 204.		0

#	Article	IF	CITATIONS
631	<title>Chirped frequency-shifted light pulses from a photonic-crystal fiber for pump-probe nonlinear absorption spectroscopy of molecular aggregates</title> ., 2006, 6344, 236.		O
632	Femtosecond dephasing of coherent excitation and ultrafast switching of resonant optical nonlinearity of molecular aggregates. JETP Letters, 2006, 83, 442-446.	1.4	0
633	Detection of subfemtosecond transients by means of nonlinear Raman scattering. Journal of Experimental and Theoretical Physics, 2006, 103, 218-223.	0.9	O
634	A double-pass optical parametric amplifier seeded by a blue-shifted output of a photonic-crystal fiber. Applied Physics B: Lasers and Optics, 2006, 83, 185-187.	2.2	0
635	Enhanced Cerenkov second-harmonic generation in patterned lithium niobate. , 2006, , .		0
636	Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber. , 2007, , .		0
637	Microjoule supercontinuum generation by prechirped laser pulses in a large-mode-area photonic-crystal fiber. , 2007, , .		O
638	Form birefringence and third-harmonic generation in nanostructured silicon oxide., 2007,,.		0
639	Microjoule supercontinuum generation by prechirped laser pulses in a large-mode-area photonic-crystal fiber. , 2007, , .		O
640	Photonic-crystal fibers for dispersion compensation in short-pulse fiber laser sources: design algorithms and dispersion characterization., 2007,,.		0
641	Enhanced light self-action in mesoporous silicon. , 2007, , .		O
642	Nonlinear optical interactions on oxidized birefringent porous silicon., 2007,,.		0
643	Nonlinear-optical transformation of nanosecond laser pulses and controlled supercontinuum generation in photonic-crystal fibers. Journal of Experimental and Theoretical Physics, 2007, 105, 886-892.	0.9	0
644	Nanomanaging dispersion, nonlinearity, and gain of photonic-crystal fibers. Applied Physics B: Lasers and Optics, 2007, 87, 205-205.	2.2	0
645	Software for numerical simulation of the generation and evolution of ultrashort light pulses in active and passive systems based on micro- and nanostructured optical fibers. Nanotechnologies in Russia, 2008, 3, 214-220.	0.7	O
646	Thermodynamic optimization of nanowaveguide sensors. Laser Physics, 2008, 18, 1447-1450.	1.2	0
647	Solitonic dynamics of ultrashort pulses in a highly nonlinear photonic-crystal fiber visualized by spectral interferometry. Optics Letters, 2008, 33, 446.	3.3	0
648	Nonlinear and Coupling Performance of Multicomponent Glass Double Core Photonic Crystal Fiber. , 2008, , .		0

#	Article	IF	CITATIONS
649	Spatial self-action of light in a large-mode-area photonic-crystal fiber. , 2009, , .		О
650	Extremely short high-energy UV pulses from a high-pressure gas: Understanding the physical limits. , 2009, , .		0
651	Compression of megawatt femtosecond laser pulses using a large-mode-area all-silica photonic band-gap fiber. , 2009, , .		0
652	Control of the harmonic-generation efficiency in photonic crystals formed by optically anisotropic layers. , 2009, , .		0
653	Investigation of tunnelling-ionization-induced third harmonic generation. , 2009, , .		0
654	Optimization of plasma-blue-shift spectral shear interferometry for characterization of few-cycle pulses. , 2009 , , .		0
655	Mapping of attosecond ionization dynamics by recollision-free higher-order harmonic generation. Proceedings of SPIE, 2009, , .	0.8	0
656	Controlling the Raman response of inhomogeneously distributed multiple vibrational modes with optimally shaped light fields. Optics Letters, 2009, 34, 575.	3.3	0
657	Optical imaging of tunneling ionization in gases and bulk solids. , 2009, , .		0
658	Steering of tunneling currents by sub-cycle waveform shaping. , 2010, , .		0
659	Spectrochronography of Raman-Shifted Solitons and Fiber-Based CARS. , 2010, , .		0
660	Slow light on a printed circuit board. Optics Letters, 2011, 36, 1788.	3.3	0
661	Nonparaxial pulse compression through spatial chirp management in a laser-induced filament. , 2011, , .		0
662	Multicore photonic-crystal-fiber sources of ultrashort pulses. , 2011, , .		0
663	Strong Field Ionization in a Multi-color Field. Springer Series in Optical Sciences, 2013, , 101-119.	0.7	0
664	Photonic-Crystal Fiber Synthesizers of Ultrafast Lightwaves. NATO Science for Peace and Security Series B: Physics and Biophysics, 2013, , 455-456.	0.3	0
665	Photonic-Crystal Fiber Platform for Ultrafast Optical Science. NATO Science for Peace and Security Series B: Physics and Biophysics, 2013, , 195-213.	0.3	0
666	Waveform shaping of stretched-pulse fiber laser output with a hollow photonic-crystal fiber. Applied Physics Letters, 2013, 102, 171113.	3.3	0

#	Article	IF	Citations
667	Generation of phase-stable half-cycle mid-infrared pulses through filamentation in gases. EPJ Web of Conferences, 2013, 41, 11003.	0.3	0
668	Enhancement of optical harmonic generation by free-state electrons in a long wavelength driver field. , 2014, , .		0
669	A compact single cycle driver for strong field applications based on a self-compression in a Kagome fiber. , 2015, , .		0
670	Generation and amplification of ultrashort mid-infrared pulses. , 2016, , .		0
671	Causality arguments behind closed-form description of air dispersion in the mid-infrared. Laser Physics Letters, 2017, 14, 045401.	1.4	0
672	Fiber-optic soliton self-compression to subcycle pulse widths in the mid-infrared. Laser Physics Letters, 2017, 14, 125401.	1.4	0
673	Vectorial magnetic field sensing with a dual-core photonic-crystal fiber: Toward fiber-optic stereomagnetometry. AIP Conference Proceedings, 2018, , .	0.4	0
674	High-Harmonic Probe for Relativistic Laser-Matter Interactions Driven by Ultrashort Pulses in the Mid-Infrared. , $2019, , .$		0
675	Comparative Study of Harmonic Generation in Air and Argon in Light Filaments Driven by Circularly Polarized Mid-IR Pulses. , 2019, , .		0
676	Multioctave Supercontinua from Shock-Coupled Soliton Self-Compression in Hollow-Core Antiresonance-Guiding PCF. , 2019, , .		0
677	Non-Linear Propagation of Ultrashort Mid-IR Pulses. , 2019, , .		0
678	Ultrafast nonlinear phenomena in fiber-optic photon-pair generation by ultrashort laser pulses. Laser Physics Letters, 2019, 16, 015402.	1.4	0
679	Resolving neural states from optical neural response readout. Laser Physics Letters, 2021, 18, 025402.	1.4	0
680	Ultralow-power instant-on photon-pair counting and photon-entanglement analysis. Laser Physics Letters, 2021, 18, 045401.	1.4	0
681	Ultrabroadband Characterization of Microwave-to-Terahertz Supercontinua Driven by Ultrashort Pulses in the Mid-Infrared. Journal of Lightwave Technology, 2021, 39, 7862-7868.	4.6	0
682	Mirrorless Backward SRS in Free-Space Gas Driven by Filament-Initiated UV Laser., 2014,,.		0
683	Ultrafast Photonics with Microstructures Fibers. NATO Science for Peace and Security Series B: Physics and Biophysics, 2015, , 153-165.	0.3	0
684	A solid-state source of subcycle pulses in the mid-infrared. , 2016, , .		0

#	Article	IF	CITATIONS
685	Nonlinear Optics with Photonic-Crystal Fibres. , 2008, , 97-127.		O
686	Laser Microscopy of Scattering Media Based on the Regularized Minimally Diffuse Image Reconstruction. JETP Letters, 2021, 114, 451-455.	1.4	0
687	Waveguided CARS in air-filled anti-resonant hollow-core fiber. , 2021, , .		0
688	Quantum resolution limit via coherent polarization Raman spectroscopy. Journal of Raman Spectroscopy, 0 , , .	2.5	0
689	Fiber sources of tailored supercontinuum in nonlinear microspectroscopy and imaging. , 0, , 373-398.		0
690	Cross-phase-modulation-induced instabilities and frequency shifts in a photonic-crystal fiber. Applied Physics B: Lasers and Optics, 2005, 80, 437.	2.2	0
691	Information geometry, Pythagorean-theorem extension, and Euclidean distance behind optical sensing via spectral analysis. Laser Physics Letters, 2022, 19, 065401.	1.4	0