Daniel Zytnicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2601291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Is there hope that transpinal direct current stimulation corrects motoneuron excitability and provides neuroprotection in amyotrophic lateral sclerosis?. Physiological Reports, 2021, 9, e14706.	1.7	5
2	Synaptic disruption and CREBâ€regulated transcription are restored by K ⁺ channel blockers in ALS. EMBO Molecular Medicine, 2021, 13, e13131.	6.9	22
3	Comments on the article by Jensen <i>etÂal</i> . (2020). Journal of Physiology, 2021, 599, 4231-4232.	2.9	2
4	Synaptic restoration by cAMP/PKA drives activity-dependent neuroprotection to motoneurons in ALS. Journal of Experimental Medicine, 2020, 217, .	8.5	40
5	Molecular and electrophysiological properties of mouse motoneuron and motor unit subtypes. Current Opinion in Physiology, 2019, 8, 23-29.	1.8	14
6	Kv1.2 Channels Promote Nonlinear Spiking Motoneurons for Powering Up Locomotion. Cell Reports, 2018, 22, 3315-3327.	6.4	27
7	Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS. ELife, 2018, 7, .	6.0	111
8	Force encoding in muscle spindles during stretch of passive muscle. PLoS Computational Biology, 2017, 13, e1005767.	3.2	104
9	Potassium currents dynamically set the recruitment and firing properties of F-type motoneurons in neonatal mice. Journal of Neurophysiology, 2015, 114, 1963-1973.	1.8	14
10	MuSK Frizzled-Like Domain Is Critical for Mammalian Neuromuscular Junction Formation and Maintenance. Journal of Neuroscience, 2015, 35, 4926-4941.	3.6	59
11	Is hyperexcitability really guilty in amyotrophic lateral sclerosis?. Neural Regeneration Research, 2015, 10, 1413.	3.0	22
12	The dendritic location of the L-type current and its deactivation by the somatic AHP current both contribute to firing bistability in motoneurons. Frontiers in Computational Neuroscience, 2014, 8, 4.	2.1	7
13	Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis. Journal of Physiology, 2014, 592, 1687-1703.	2.9	128
14	Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis. ELife, 2014, 3, .	6.0	136
15	ALPHA, BETA AND GAMMA MOTONEURONS: FUNCTIONAL DIVERSITY IN THE MOTOR SYSTEM'S FINAL PATHWAY. Journal of Integrative Neuroscience, 2011, 10, 243-276.	1.7	56
16	Mixed Mode Oscillations in Mouse Spinal Motoneurons Arise from a Low Excitability State. Journal of Neuroscience, 2011, 31, 5829-5840.	3.6	51
17	Fast Kinetics, High-Frequency Oscillations, and Subprimary Firing Range in Adult Mouse Spinal Motoneurons. Journal of Neuroscience, 2009, 29, 11246-11256.	3.6	78
18	Resonant or Not, Two Amplification Modes of Proprioceptive Inputs by Persistent Inward Currents in Spinal Motoneurons. Journal of Neuroscience, 2007, 27, 12977-12988.	3.6	42

DANIEL ZYTNICKI

#	Article	IF	CITATIONS
19	The afterhyperpolarization conductance exerts the same control over the gain and variability of motoneurone firing in anaesthetized cats. Journal of Physiology, 2006, 576, 873-886.	2.9	32
20	How Much Afterhyperpolarization Conductance Is Recruited by an Action Potential? A Dynamic-Clamp Study in Cat Lumbar Motoneurons. Journal of Neuroscience, 2005, 25, 8917-8923.	3.6	23
21	How shunting inhibition affects the discharge of lumbar motoneurones: a dynamic clamp study in anaesthetized cats. Journal of Physiology, 2004, 558, 671-683.	2.9	32
22	Positive Proprioceptive Feedback Elicited By Isometric Contractions of Ankle Flexors on Pretibial Motoneurons in Cats. Journal of Neurophysiology, 2002, 88, 2207-2214.	1.8	8
23	Quantitative evidence for multiple widespread representations of individual muscles in the cat motor cortex. Neuroscience Letters, 2001, 310, 183-187.	2.1	22
24	Cooperation of Muscle and Cutaneous Afferents in the Feedback of Contraction to Peroneal Motoneurons. Journal of Neurophysiology, 2000, 83, 3201-3208.	1.8	10
25	Effects on Peroneal Motoneurons of Cutaneous Afferents Activated by Mechanical or Electrical Stimulations. Journal of Neurophysiology, 2000, 83, 3209-3216.	1.8	12
26	Flexible processing of sensory information induced by axo-axonic synapses on afferent fibers. Journal of Physiology (Paris), 1999, 93, 369-377.	2.1	7
27	Reduction of presynaptic action potentials by PAD: model and experimental study. Journal of Computational Neuroscience, 1998, 5, 141-156.	1.0	23
28	Indications for GABA-Immunoreactive Axo-Axonic Contacts on the Intraspinal Arborization of a Ib Fiber in Cat: A Confocal Microscope Study. Journal of Neuroscience, 1998, 18, 10030-10036.	3.6	33
29	Contraction-induced excitation in cat peroneal motoneurons. Journal of Neurophysiology, 1995, 73, 974-982.	1.8	14
30	Neuromimetic model of a neuronal filter. Biological Cybernetics, 1993, 70, 115-121.	1.3	6
31	Declining inhibition in ipsi- and contralateral lumbar motoneurons during contractions of an ankle extensor muscle in the cat. Journal of Neurophysiology, 1993, 70, 1797-1804.	1.8	14
32	Declining inhibition elicited in cat lumbar motoneurons by repetitive stimulation of group II muscle afferents. Journal of Neurophysiology, 1993, 70, 1805-1810.	1.8	12
33	Depolarization of Ib afferent axons in the cat spinal cord during homonymous muscle contraction Journal of Physiology, 1992, 445, 345-354.	2.9	42
34	Reduction of Ib autogenetic inhibition in motoneurons during contractions of an ankle extensor muscle in the cat. Journal of Neurophysiology, 1990, 64, 1380-1389.	1.8	66
35	Ensemble discharge from Golgi tendon organs of cat peroneus tertius muscle. Journal of Neurophysiology, 1990, 64, 813-821.	1.8	36
36	Postnatal development of peroneal motoneurons in the kitten. Developmental Brain Research, 1990, 54, 205-215.	1.7	14

DANIEL ZYTNICKI

#	Article	IF	CITATIONS
37	Activation of Golgi tendon organs by asynchronous contractions of motor units in cat leg muscles. Neuroscience Letters, 1989, 103, 44-49.	2.1	3
38	Observations on static and dynamic responses of muscle stretch receptors in kittens. Brain Research, 1989, 478, 34-40.	2.2	2
39	Motor nuclei of peroneal muscles in the cat spinal cord. Journal of Comparative Neurology, 1988, 277, 430-440.	1.6	110
40	Effects of muscle shortening on the responses of cat tendon organs to unfused contractions. Journal of Neurophysiology, 1988, 59, 1510-1523.	1.8	102
41	Lamina VIII interneurones interposed in crossed reflex pathways in the cat Journal of Physiology, 1986, 371, 147-166.	2.9	165
42	Responses of tendon organs to unfused contractions of single motor units. Journal of Neurophysiology, 1985, 53, 32-42.	1.8	116
43	Lack of summation of dynamic and static components in the responses of cat tendon organs. Brain Research, 1985, 337, 378-381.	2.2	2
44	Comparison of group I non-reciprocal inhibition of individual motoneurones of a homogeneous population. Brain Research, 1985, 329, 379-383.	2.2	10
45	Crossed actions of group I muscle afferents in the cat Journal of Physiology, 1984, 356, 263-273.	2.9	38
46	Labelling of interneurones by retrograde transsynaptic transport of horseradish peroxidase from motoneurones in rats and cats. Neuroscience Letters, 1984, 45, 15-19.	2.1	142
47	Action of dantrolene sodium on single motor units of cat muscle in vivo. Brain Research, 1983, 261, 285-294.	2.2	16
48	Afterâ€effects of repetitive stimulation at low frequency on fastâ€contracting motor units of cat muscle Journal of Physiology, 1983, 340, 129-143.	2.9	48
49	Distribution of physiological types of motor units in the cat peroneus tertius muscle. Experimental Brain Research, 1982, 48, 177-84.	1.5	21