
Mark E Diekhans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2600411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The UCSC Genome Browser database: 2022 update. Nucleic Acids Research, 2022, 50, D1115-D1122.	14.5	175
2	Identification of high-confidence human poly(A) RNA isoform scaffolds using nanopore sequencing. Rna, 2022, 28, 162-176.	3.5	12
3	Complete genomic and epigenetic maps of human centromeres. Science, 2022, 376, eabl4178.	12.6	204
4	The complete sequence of a human genome. Science, 2022, 376, 44-53.	12.6	1,222
5	Segmental duplications and their variation in a complete human genome. Science, 2022, 376, eabj6965.	12.6	130
6	GENCODE 2021. Nucleic Acids Research, 2021, 49, D916-D923.	14.5	633
7	The UCSC Genome Browser database: 2021 update. Nucleic Acids Research, 2021, 49, D1046-D1057.	14.5	354
8	Towards complete and error-free genome assemblies of all vertebrate species. Nature, 2021, 592, 737-746.	27.8	1,139
9	A high-quality bonobo genome refines the analysis of hominid evolution. Nature, 2021, 594, 77-81.	27.8	39
10	UCSC Genome Browser enters 20th year. Nucleic Acids Research, 2020, 48, D756-D761.	14.5	138
11	Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature, 2020, 587, 246-251.	27.8	256
12	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	27.8	251
13	Transcriptional activity and strain-specific history of mouse pseudogenes. Nature Communications, 2020, 11, 3695.	12.8	17
14	Perspectives on ENCODE. Nature, 2020, 583, 693-698.	27.8	123
15	Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. Science, 2020, 370, .	12.6	105
16	AMELIE speeds Mendelian diagnosis by matching patient phenotype and genotype to primary literature. Science Translational Medicine, 2020, 12, .	12.4	60
17	halSynteny: a fast, easy-to-use conserved synteny block construction method for multiple whole-genome alignments. GigaScience, 2020, 9, .	6.4	10
18	Re-annotation of 191 developmental and epileptic encephalopathy-associated genes unmasks de novo variants in SCN1A. Npj Genomic Medicine, 2019, 4, 31.	3.8	27

MARK E DIEKHANS

#	Article	IF	CITATIONS
19	The UCSC Genome Browser database: 2019 update. Nucleic Acids Research, 2019, 47, D853-D858.	14.5	699
20	GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Research, 2019, 47, D766-D773.	14.5	2,350
21	Whole-Genome Alignment and Comparative Annotation. Annual Review of Animal Biosciences, 2019, 7, 41-64.	7.4	62
22	Consensus coding sequence (CCDS) database: a standardized set of human and mouse protein-coding regions supported by expert curation. Nucleic Acids Research, 2018, 46, D221-D228.	14.5	97
23	Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nature Genetics, 2018, 50, 1574-1583.	21.4	169
24	The UCSC Genome Browser database: 2018 update. Nucleic Acids Research, 2018, 46, D762-D769.	14.5	476
25	Evaluating recovery potential of the northern white rhinoceros from cryopreserved somatic cells. Genome Research, 2018, 28, 780-788.	5.5	39
26	High-resolution comparative analysis of great ape genomes. Science, 2018, 360, .	12.6	304
27	Comparative Annotation Toolkit (CAT)—simultaneous clade and personal genome annotation. Genome Research, 2018, 28, 1029-1038.	5.5	86
28	OUP accepted manuscript. Nucleic Acids Research, 2017, 45, D626-D634.	14.5	308
29	Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal genome project community challenges. Human Mutation, 2017, 38, 1266-1276.	2.5	14
30	Long-read sequence assembly of the gorilla genome. Science, 2016, 352, aae0344.	12.6	368
31	The UCSC Genome Browser database: 2016 update. Nucleic Acids Research, 2016, 44, D717-D725.	14.5	376
32	Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biology, 2015, 16, 277.	8.8	167
33	The UCSC Cancer Genomics Browser: update 2015. Nucleic Acids Research, 2015, 43, D812-D817.	14.5	300
34	The NIH BD2K center for big data in translational genomics. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1143-1147.	4.4	30
35	The UCSC Genome Browser database: 2015 update. Nucleic Acids Research, 2015, 43, D670-D681.	14.5	891
36	The UCSC Genome Browser database: 2014 update. Nucleic Acids Research, 2014, 42, D764-D770.	14.5	619

MARK E DIEKHANS

#	Article	IF	CITATIONS
37	Current status and new features of the Consensus Coding Sequence database. Nucleic Acids Research, 2014, 42, D865-D872.	14.5	140
38	Comparative analysis of pseudogenes across three phyla. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13361-13366.	7.1	72
39	Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. Human Molecular Genetics, 2014, 23, 5866-5878.	2.9	463
40	MuPIT interactive: webserver for mapping variant positions to annotated, interactive 3D structures. Human Genetics, 2013, 132, 1235-1243.	3.8	68
41	The UCSC Cancer Genomics Browser: update 2013. Nucleic Acids Research, 2013, 41, D949-D954.	14.5	172
42	The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Research, 2012, 40, D918-D923.	14.5	294
43	The GENCODE pseudogene resource. Genome Biology, 2012, 13, R51.	9.6	273
44	GENCODE: The reference human genome annotation for The ENCODE Project. Genome Research, 2012, 22, 1760-1774.	5.5	4,217
45	ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucleic Acids Research, 2012, 40, D912-D917.	14.5	220
46	Cactus Graphs for Genome Comparisons. Journal of Computational Biology, 2011, 18, 469-481.	1.6	93
47	Assemblathon 1: A competitive assessment of de novo short read assembly methods. Genome Research, 2011, 21, 2224-2241.	5.5	443
48	Cactus: Algorithms for genome multiple sequence alignment. Genome Research, 2011, 21, 1512-1528.	5.5	245
49	The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Research, 2009, 19, 1316-1323.	5.5	476
50	The completion of the Mammalian Gene Collection (MGC). Genome Research, 2009, 19, 2324-2333.	5.5	125
51	Retrocopy contributions to the evolution of the human genome. BMC Genomics, 2008, 9, 466.	2.8	93
52	Using native and syntenically mapped cDNA alignments to improve <i>de novo</i> gene finding. Bioinformatics, 2008, 24, 637-644.	4.1	1,618
53	Targeted discovery of novel human exons by comparative genomics. Genome Research, 2007, 17, 1763-1773.	5.5	42
54	28-Way vertebrate alignment and conservation track in the UCSC Genome Browser. Genome Research, 2007, 17, 1797-1808.	5.5	237

MARK E DIEKHANS

#	Article	IF	CITATIONS
55	Comparative Genomics Search for Losses of Long-Established Genes on the Human Lineage. PLoS Computational Biology, 2007, 3, e247.	3.2	103
56	Regions of extreme synonymous codon selection in mammalian genes. Nucleic Acids Research, 2006, 34, 1700-1710.	14.5	47
57	Analysis of Human mRNAs With the Reference Genome Sequence Reveals Potential Errors, Polymorphisms, and RNA Editing. Genome Research, 2004, 14, 2034-2040.	5.5	26
58	Score Functions for Determining Regional Conservation in Two-Species Local Alignments. Journal of Computational Biology, 2004, 11, 395-411.	1.6	2
59	Covariation in Frequencies of Substitution, Deletion, Transposition, and Recombination During Eutherian Evolution. Genome Research, 2003, 13, 13-26.	5.5	263
60	Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, 420, 520-562.	27.8	6,319
61	A Discriminative Framework for Detecting Remote Protein Homologies. Journal of Computational Biology, 2000, 7, 95-114.	1.6	370
62	Predicting protein structure using only sequence information. Proteins: Structure, Function and Bioinformatics, 1999, 37, 121-125.	2.6	76
63	Predicting protein structure using only sequence information. , 1999, 37, 121.		1
64	Predicting protein structure using only sequence information. Proteins: Structure, Function and Bioinformatics, 1999, 37, 121-125.	2.6	52