Nandakumar S Narayanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2598982/publications.pdf

Version: 2024-02-01

97 papers 4,754 citations

36 h-index 62 g-index

114 all docs

114 docs citations

times ranked

114

5531 citing authors

#	Article	IF	Citations
1	A pilot to assess target engagement of terazosin in Parkinson's disease. Parkinsonism and Related Disorders, 2022, 94, 79-83.	2.2	17
2	The way forward for cognition in Parkinson's disease. Progress in Brain Research, 2022, 269, 457-462.	1.4	3
3	Neuromodulation of cognition in Parkinson's disease. Progress in Brain Research, 2022, 269, 435-455.	1.4	4
4	OUP accepted manuscript. Cerebral Cortex, 2022, , .	2.9	3
5	The voltage-gated Ca2+ channel subunit $\hat{l}\pm2\hat{l}$ -4 regulates locomotor behavior and sensorimotor gating in mice. PLoS ONE, 2022, 17, e0263197.	2.5	5
6	Quantifying the inverted U: A meta-analysis of prefrontal dopamine, D1 receptors, and working memory Behavioral Neuroscience, 2022, 136, 207-218.	1.2	6
7	Mice expressing P301S mutant human tau have deficits in interval timing. Behavioural Brain Research, 2022, 432, 113967.	2.2	7
8	Medial prefrontal cortex and the temporal control of action. International Review of Neurobiology, 2021, 158, 421-441.	2.0	8
9	Timing variability and midfrontal ~4 Hz rhythms correlate with cognition in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 14.	5. 3	44
10	Association of Glycolysis-Enhancing \hat{l}_{\pm} -1 Blockers With Risk of Developing Parkinson Disease. JAMA Neurology, 2021, 78, 407.	9.0	42
11	Experienceâ€related enhancements in striatal temporal encoding. European Journal of Neuroscience, 2021, 54, 5063-5074.	2.6	11
12	Developing Precision Invasive Neuromodulation for Psychiatry. Journal of Neuropsychiatry and Clinical Neurosciences, 2021, 33, 201-209.	1.8	4
13	Cortical alpha-synuclein preformed fibrils do not affect interval timing in mice. Neuroscience Letters, 2021, 765, 136273.	2.1	8
14	COVID-19 Case Fatality and Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 84, 1447-1452.	2.6	17
15	GABAergic Modulation in Movement Related Oscillatory Activity: A Review of the Effect Pharmacologically and with Aging. Tremor and Other Hyperkinetic Movements, 2021, 11, 48.	2.0	3
16	COVID-19-associated necrotizing encephalopathy presenting without active respiratory symptoms: a case report with histopathology. Journal of NeuroVirology, 2021, , 1.	2.1	10
17	Temporal Learning Among Prefrontal and Striatal Ensembles. Cerebral Cortex Communications, 2020, 1, tgaa058.	1.6	17
18	Linear predictive coding distinguishes spectral EEG features of Parkinson's disease. Parkinsonism and Related Disorders, 2020, 79, 79-85.	2.2	65

#	Article	IF	Citations
19	Approach to Cognitive Impairment in Parkinson's Disease. Neurotherapeutics, 2020, 17, 1495-1510.	4.4	29
20	<scp>Coronavirus Disease 201</scp> 9 Case Fatality and Parkinson's Disease. Movement Disorders, 2020, 35, 1914-1915.	3.9	55
21	Linear Predictive Approaches Separate Field Potentials in Animal Model of Parkinson's Disease. Frontiers in Neuroscience, 2020, 14, 394.	2.8	6
22	Bed nuclei of the stria terminalis modulate memory consolidation via glucocorticoid-dependent and -independent circuits. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8104-8114.	7.1	15
23	Frontal theta and beta oscillations during lower-limb movement in Parkinson's disease. Clinical Neurophysiology, 2020, 131, 694-702.	1.5	71
24	The Fastest Way to Stop: Inhibitory Control and IFG-STN Hyperdirect Connectivity. Neuron, 2020, 106, 549-551.	8.1	11
25	Levodopa-induced dyskinesias in Parkinson's disease. , 2020, , 543-555.		O
26	Prefrontal D1 Dopamine-Receptor Neurons and Delta Resonance in Interval Timing. Cerebral Cortex, 2019, 29, 2051-2060.	2.9	28
27	Attenuation of cocaine seeking in rats via enhancement of infralimbic cortical activity using stable step-function opsins. Psychopharmacology, 2019, 236, 479-490.	3.1	24
28	Scopolamine and Medial Frontal Stimulus-Processing during Interval Timing. Neuroscience, 2019, 414, 219-227.	2.3	13
29	Corticostriatal stimulation compensates for medial frontal inactivation during interval timing. Scientific Reports, 2019, 9, 14371.	3.3	17
30	Opinion and Special Articles: Mentoring in neurology. Neurology, 2019, 92, 1159-1162.	1.1	2
31	Demographics and Autoantibody Profiles of Pemphigoid Patients with Underlying Neurologic Diseases. Journal of Investigative Dermatology, 2019, 139, 1860-1866.e1.	0.7	15
32	Effect of deep brain stimulation on vocal motor control mechanisms in Parkinson's disease. Parkinsonism and Related Disorders, 2019, 63, 46-53.	2.2	9
33	Striatal dopamine and the temporal control of behavior. Behavioural Brain Research, 2019, 356, 375-379.	2.2	35
34	Prefrontal–Bed Nucleus Circuit Modulation of a Passive Coping Response Set. Journal of Neuroscience, 2019, 39, 1405-1419.	3.6	42
35	Age-dependent nigral dopaminergic neurodegeneration and $\hat{l}\pm$ -synuclein accumulation in RGS6-deficient mice. JCI Insight, 2019, 4, .	5.0	14
36	Enhancing glycolysis attenuates Parkinson's disease progression in models and clinical databases. Journal of Clinical Investigation, 2019, 129, 4539-4549.	8.2	159

#	Article	IF	CITATIONS
37	Basolateral Amygdala Inputs to the Medial Entorhinal Cortex Selectively Modulate the Consolidation of Spatial and Contextual Learning. Journal of Neuroscience, 2018, 38, 2698-2712.	3.6	36
38	A human prefrontal-subthalamic circuit for cognitive control. Brain, 2018, 141, 205-216.	7.6	100
39	Mid-frontal theta activity is diminished during cognitive control in Parkinson's disease. Neuropsychologia, 2018, 117, 113-122.	1.6	90
40	Parkinson's Disease Dementia and Dementia with Lewy Bodies Have Similar Neuropsychological Profiles. Frontiers in Neurology, 2018, 9, 123.	2.4	31
41	Inhibitory Control: Mapping Medial Frontal Cortex. Current Biology, 2017, 27, R148-R150.	3.9	17
42	Separating the effect of reward from corrective feedback during learning in patients with Parkinson's disease. Cognitive, Affective and Behavioral Neuroscience, 2017, 17, 678-695.	2.0	8
43	Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Molecular Psychiatry, 2017, 22, 647-655.	7.9	99
44	Lip Sync: Gamma Rhythms Orchestrate Top-Down Control of Feeding Circuits. Cell Metabolism, 2017, 25, 497-498.	16.2	4
45	Axial levodopa-induced dyskinesias and neuronal activity in the dorsal striatum. Neuroscience, 2017, 343, 240-249.	2.3	24
46	Optogenetic Stimulation of Frontal D1 Neurons Compensates for Impaired Temporal Control of Action in Dopamine-Depleted Mice. Current Biology, 2017, 27, 39-47.	3.9	81
47	Rodent Medial Frontal Control of Temporal Processing in the Dorsomedial Striatum. Journal of Neuroscience, 2017, 37, 8718-8733.	3.6	118
48	Projection targets of medial frontal D1DR-expressing neurons. Neuroscience Letters, 2017, 655, 166-171.	2.1	14
49	RNA Interference of Human α-Synuclein in Mouse. Frontiers in Neurology, 2017, 8, 13.	2.4	19
50	Corticostriatal Field Potentials Are Modulated at Delta and Theta Frequencies during Interval-Timing Task in Rodents. Frontiers in Psychology, 2016, 7, 459.	2.1	38
51	Ramping activity is a cortical mechanism of temporal control of action. Current Opinion in Behavioral Sciences, 2016, 8, 226-230.	3.9	56
52	A Basal Forebrain Site Coordinates the Modulation of Endocrine and Behavioral Stress Responses via Divergent Neural Pathways. Journal of Neuroscience, 2016, 36, 8687-8699.	3.6	55
53	Startle Habituation and Midfrontal Theta Activity in Parkinson Disease. Journal of Cognitive Neuroscience, 2016, 28, 1923-1932.	2.3	40
54	Basolateral amygdala projections to ventral hippocampus modulate the consolidation of footshock, but not contextual, learning in rats. Learning and Memory, 2016, 23, 51-60.	1.3	53

#	Article	IF	CITATIONS
55	Clock Speed as a Window into Dopaminergic Control of Emotion and Time Perception. Timing and Time Perception, 2016, 4, 99-122.	0.6	49
56	Autoantibodies to Collagen XVII Are Present in Parkinson's Disease and Localize to Tyrosine-Hydroxylase Positive Neurons. Journal of Investigative Dermatology, 2016, 136, 721-723.	0.7	31
57	Optogenetic approaches to evaluate striatal function in animal models of Parkinson disease. Dialogues in Clinical Neuroscience, 2016, 18, 99-107.	3.7	15
58	Infusion of D1 Dopamine Receptor Agonist into Medial Frontal Cortex Disrupts Neural Correlates of Interval Timing. Frontiers in Behavioral Neuroscience, 2015, 9, 294.	2.0	47
59	Disease-modifying therapeutic directions for Lewy-Body dementias. Frontiers in Neuroscience, 2015, 9, 293.	2.8	23
60	Medial frontal â^¼4-Hz activity in humans and rodents is attenuated in PD patients and in rodents with cortical dopamine depletion. Journal of Neurophysiology, 2015, 114, 1310-1320.	1.8	83
61	Mistakes were made: Neural mechanisms for the adaptive control of action initiation by the medial prefrontal cortex. Journal of Physiology (Paris), 2015, 109, 104-117.	2.1	65
62	The vulnerable ventral tegmental area in Parkinson's disease. Basal Ganglia, 2015, 5, 51-55.	0.3	130
63	New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease. Frontiers in Biology, 2015, 10, 230-238.	0.7	17
64	High-gamma band fronto-temporal coherence as a measure of functional connectivity in speech motor control. Neuroscience, 2015, 305, 15-25.	2.3	31
65	Neuropeptide Y Activity in the Nucleus Accumbens Modulates Feeding Behavior and Neuronal Activity. Biological Psychiatry, 2015, 77, 633-641.	1.3	51
66	Protective efficacy of P7C3-S243 in the 6-hydroxydopamine model of Parkinson's disease. Npj Parkinson's Disease, 2015, 1 , .	5. 3	39
67	The therapeutic potential of the cerebellum in schizophrenia. Frontiers in Systems Neuroscience, 2014, 8, 163.	2.5	66
68	D ₁ -Dependent 4 Hz Oscillations and Ramping Activity in Rodent Medial Frontal Cortex during Interval Timing. Journal of Neuroscience, 2014, 34, 16774-16783.	3.6	102
69	Amantadine's role in the treatment of levodopa-induced dyskinesia. Neurology, 2014, 82, 288-289.	1.1	24
70	Two cases of pregnancy in Parkinson's disease. Parkinsonism and Related Disorders, 2014, 20, 239-240.	2,2	17
71	Medial prefrontal D1 dopamine neurons control food intake. Nature Neuroscience, 2014, 17, 248-253.	14.8	152
72	Vogt-Koyanagi-Harada syndrome: A novel case and brief review of focal neurologic presentations. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e49.	6.0	10

#	Article	IF	Citations
7 3	Prefrontal dopamine signaling and cognitive symptoms of Parkinson's disease. Reviews in the Neurosciences, 2013, 24, 267-78.	2.9	152
74	Common medial frontal mechanisms of adaptive control in humans and rodents. Nature Neuroscience, 2013, 16, 1888-1895.	14.8	260
7 5	Prefrontal D1 dopamine signaling is necessary for temporal expectation during reaction time performance. Neuroscience, 2013, 255, 246-254.	2.3	42
76	Thrombolysis for acute stroke in patients with vasculitis: Case report and literature discussion. Clinical Neurology and Neurosurgery, 2013, 115, 351-353.	1.4	10
77	Clinical Reasoning: A 64-year-old woman with progressive quadriparesis. Neurology, 2013, 81, e89-94.	1.1	2
78	Sensorimotor integration during human self-vocalization: Insights from invasive electrophysiology. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
79	Executive dysfunction in Parkinson's disease and timing deficits. Frontiers in Integrative Neuroscience, 2013, 7, 75.	2.1	80
80	Prefrontal D1 dopamine signaling is required for temporal control. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20726-20731.	7.1	112
81	Teaching Neuro <i>Images</i> : CNS actinomycosis in an immunocompetent patient. Neurology, 2012, 79, e85.	1.1	O
82	Ipsilateral synkinesia involves the supplementary motor area. Neuroscience Letters, 2012, 523, 135-138.	2.1	11
83	Feeding as a Reward Mechanism. , 2012, , 47-60.		O
84	Capacity-Speed Relationships in Prefrontal Cortex. PLoS ONE, 2011, 6, e27504.	2.5	14
85	Metabolic hormones, dopamine circuits, and feeding. Frontiers in Neuroendocrinology, 2010, 31, 104-112.	5.2	140
86	Regulation of Nucleus Accumbens Activity by the Hypothalamic Neuropeptide Melanin-Concentrating Hormone. Journal of Neuroscience, 2010, 30, 8263-8273.	3.6	96
87	Past Performance Is Indicative of Future Returns. Neuron, 2009, 63, 146-148.	8.1	5
88	Delay Activity in Rodent Frontal Cortex During a Simple Reaction Time Task. Journal of Neurophysiology, 2009, 101, 2859-2871.	1.8	124
89	Methods for Studying Functional Interactions Among Neuronal Populations. Methods in Molecular Biology, 2009, 489, 135-165.	0.9	48
90	Imaging the spread of reversible brain inactivations using fluorescent muscimol. Journal of Neuroscience Methods, 2008, 171, 30-38.	2.5	180

#	Article	IF	CITATIONS
91	Single-neuron and ensemble contributions to decoding simultaneously recorded spike trains. , 2008, , $120\text{-}148$.		2
92	Neuronal Correlates of Post-Error Slowing in the Rat Dorsomedial Prefrontal Cortex. Journal of Neurophysiology, 2008, 100, 520-525.	1.8	105
93	Top-Down Control of Motor Cortex Ensembles by Dorsomedial Prefrontal Cortex. Neuron, 2006, 52, 921-931.	8.1	272
94	Reversible inactivations of rat medial prefrontal cortex impair the ability to wait for a stimulus. Neuroscience, 2006, 139, 865-876.	2.3	146
95	The Role of the Prefrontal Cortex in the Maintenance of Verbal Working Memory: An Event-Related fMRI Analysis Neuropsychology, 2005, 19, 223-232.	1.3	154
96	Spectral representationâ€"analyzing single-unit activity in extracellularly recorded neuronal data without spike sorting. Journal of Neuroscience Methods, 2005, 144, 53-61.	2.5	21
97	Redundancy and Synergy of Neuronal Ensembles in Motor Cortex. Journal of Neuroscience, 2005, 25, 4207-4216.	3.6	104