
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2598958/publications.pdf Version: 2024-02-01

MARC | REITMAN

#	Article	IF	CITATIONS
1	How does obesity promote breast cancer tumor growth?. Cell Metabolism, 2021, 33, 462-463.	16.2	4
2	Adenosine A3 agonists reverse neuropathic pain via T cell–mediated production of IL-10. Journal of Clinical Investigation, 2021, 131, .	8.2	44
3	Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metabolism, 2021, 33, 1389-1403.e6.	16.2	29
4	Finding a sweet spot for leptin. Med, 2021, 2, 794-796.	4.4	0
5	Cre Recombinase Driver Mice Reveal Lineage-Dependent and -Independent Expression of Brs3 in the Mouse Brain. ENeuro, 2021, 8, ENEURO.0252-21.2021.	1.9	2
6	Adenosine A1 receptor is dispensable for hepatocyte glucose metabolism and insulin sensitivity. Biochemical Pharmacology, 2021, 192, 114739.	4.4	3
7	The effects of housing density on mouse thermal physiology depend on sex and ambient temperature. Molecular Metabolism, 2021, 53, 101332.	6.5	16
8	The contribution of the mouse tail to thermoregulation is modest. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E438-E446.	3.5	20
9	BRS3 in both MC4R- and SIM1-expressing neurons regulates energy homeostasis in mice. Molecular Metabolism, 2020, 36, 100969.	6.5	11
10	Truncated (N)-Methanocarba Nucleosides as Partial Agonists at Mouse and Human A ₃ Adenosine Receptors: Affinity Enhancement by <i>N</i> ⁶ -(2-Phenylethyl) Substitution. Journal of Medicinal Chemistry, 2020, 63, 4334-4348.	6.4	17
11	Adenosine-Related Mechanisms in Non-Adenosine Receptor Drugs. Cells, 2020, 9, 956.	4.1	15
12	Mouse Thermoregulation: Introducing the Concept of the Thermoneutral Point. Cell Reports, 2020, 31, 107501.	6.4	87
13	Activation of neuronal adenosine A1 receptors causes hypothermia through central and peripheral mechanisms. PLoS ONE, 2020, 15, e0243986.	2.5	5
14	Title is missing!. , 2020, 15, e0243986.		0
15	Title is missing!. , 2020, 15, e0243986.		0
16	Title is missing!. , 2020, 15, e0243986.		0
17	Title is missing!. , 2020, 15, e0243986.		0

2

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 15, e0243986.		0
20	Quantification of the Capacity for Cold-Induced Thermogenesis in Young Men With and Without Obesity. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4865-4878.	3.6	31
21	Reply to Letter to the Editor: "No insulating effect of obesity, neither in mice nor in humans― American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E954-E956.	3.5	4
22	Reply to DS Ludwig et al American Journal of Clinical Nutrition, 2019, 110, 1255-1256.	4.7	0
23	Cool(ing) brain stem GABA neurons. Cell Research, 2019, 29, 785-786.	12.0	1
24	Glucose and Lipid Homeostasis and Inflammation in Humans Following an Isocaloric Ketogenic Diet. Obesity, 2019, 27, 971-981.	3.0	75
25	Methodologic considerations for measuring energy expenditure differences between diets varying in carbohydrate using the doubly labeled water method. American Journal of Clinical Nutrition, 2019, 109, 1328-1334.	4.7	38
26	Physiology and effects of nucleosides in mice lacking all four adenosine receptors. PLoS Biology, 2019, 17, e3000161.	5.6	46
27	Design and in Vivo Characterization of A ₁ Adenosine Receptor Agonists in the Native Ribose and Conformationally Constrained (N)-Methanocarba Series. Journal of Medicinal Chemistry, 2019, 62, 1502-1522.	6.4	22
28	Of mice and men – environmental temperature, body temperature, and treatment of obesity. FEBS Letters, 2018, 592, 2098-2107.	2.8	96
29	Activation of adenosine A2A or A2B receptors causes hypothermia in mice. Neuropharmacology, 2018, 139, 268-278.	4.1	20
30	Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake. Nature Neuroscience, 2018, 21, 1530-1540.	14.8	62
31	Melanotan II causes hypothermia in mice by activation of mast cells and stimulation of histamine 1 receptors. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E357-E366.	3.5	7
32	Coadministration of Rifampin Significantly Reduces Odanacatib Concentrations in Healthy Subjects. Journal of Clinical Pharmacology, 2017, 57, 110-117.	2.0	2
33	Hypothermia in mouse is caused by adenosine A1 and A3 receptor agonists and AMP via three distinct mechanisms. Neuropharmacology, 2017, 114, 101-113.	4.1	60
34	Peripheral cannabinoid-1 receptor blockade restores hypothalamic leptin signaling. Molecular Metabolism, 2017, 6, 1113-1125.	6.5	64
35	Bombesin-like receptor 3 (Brs3) expression in glutamatergic, but not GABAergic, neurons is required for regulation of energy metabolism. Molecular Metabolism, 2017, 6, 1540-1550.	6.5	15
36	How Does Fat Transition from White to Beige?. Cell Metabolism, 2017, 26, 14-16.	16.2	27

#	Article	IF	CITATIONS
37	Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. American Journal of Clinical Nutrition, 2016, 104, 324-333.	4.7	259
38	Bombesin-Like Receptor 3: Physiology of a Functional Orphan. Trends in Endocrinology and Metabolism, 2016, 27, 603-605.	7.1	26
39	Hormone-Replacement Therapy for Melanocyte-Stimulating Hormone Deficiency. New England Journal of Medicine, 2016, 375, 278-279.	27.0	6
40	Reply to DS Ludwig and CB Ebbeling. American Journal of Clinical Nutrition, 2016, 104, 1488-1490.	4.7	7
41	Bombesin-like receptor 3 regulates blood pressure and heart rate via a central sympathetic mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H891-H898.	3.2	20
42	Peripheral Adenosine A3 Receptor Activation Causes Regulated Hypothermia in Mice That Is Dependent on Central Histamine H1 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 475-483.	2.5	22
43	Anti-obesity and metabolic efficacy of the β3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22°C. Obesity, 2015, 23, 1450-1459.	3.0	100
44	Integration of body temperature into the analysis of energy expenditure in the mouse. Molecular Metabolism, 2015, 4, 461-470.	6.5	171
45	RM-493, a Melanocortin-4 Receptor (MC4R) Agonist, Increases Resting Energy Expenditure in Obese Individuals. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1639-1645.	3.6	147
46	Search for an Endogenous Bombesin-Like Receptor 3 (BRS-3) Ligand Using Parabiotic Mice. PLoS ONE, 2015, 10, e0142637.	2.5	6
47	A Semi-mechanistic Model for the Effects of a Novel Glucagon Receptor Antagonist on Glucagon and the Interaction Between Glucose, Glucagon, and Insulin Applied to Adaptive Phase II Design. AAPS Journal, 2014, 16, 1259-1270.	4.4	14
48	Biphasic Effect of Melanocortin Agonists on Metabolic Rate and Body Temperature. Cell Metabolism, 2014, 20, 333-345.	16.2	31
49	The Chemical Uncoupler 2,4-Dinitrophenol (DNP) Protects against Diet-induced Obesity and Improves Energy Homeostasis in Mice at Thermoneutrality. Journal of Biological Chemistry, 2014, 289, 19341-19350.	3.4	108
50	Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E681-E687.	3.5	30
51	Effect of Intermittent Cold Exposure on Brown Fat Activation, Obesity, and Energy Homeostasis in Mice. PLoS ONE, 2014, 9, e85876.	2.5	110
52	FGF21 Mimetic Shows Therapeutic Promise. Cell Metabolism, 2013, 18, 307-309.	16.2	45
53	Weight Loss after Gastric Bypass Is Associated with a Variant at 15q26.1. American Journal of Human Genetics, 2013, 92, 827-834.	6.2	65
54	Comparative Pharmacology of Bombesin Receptor Subtype-3, Nonpeptide Agonist MK-5046, a Universal Peptide Agonist, and Peptide Antagonist Bantag-1 for Human Bombesin Receptors. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 100-116.	2.5	28

ARTICLE IF CITATIONS Leptin in the Liver: A Toxic or Beneficial Mix?. Cell Metabolism, 2012, 16, 1-2. 16.2 A guide to analysis of mouse energy metabolism. Nature Methods, 2012, 9, 57-63. 19.0 655 56 Pharmacokinetics and Pharmacodynamics of MKâ€5046, a Bombesin Receptor Subtypeâ€3 (BRSâ€3) Agonist, in Healthy Patients. Journal of Clinical Pharmacology, 2012, 52, 1306-1316. Discovery of MK-7725, A Potent, Selective Bombesin Receptor Subtype-3 Agonist for the Treatment of 58 2.8 44 Obesity. ACS Medicinal Chemistry Letters, 2012, 3, 252-256. The design and synthesis of potent, selective benzodiazepine sulfonamide bombesin receptor subtype 3 (BRS-3) agonists with an increased barrier of atropisomerization. Bioorganic and Medicinal Chemistry, 28 2012, 20, 2845-2849. A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort. 60 5.5 161 Genome Research, 2011, 21, 1008-1016. Discovery of MK-5046, a Potent, Selective Bombesin Receptor Subtype-3 Agonist for the Treatment of 2.8 Obesity. ACS Medicinal Chemistry Letters, 2011, 2, 43-47. Rifampin's Acute Inhibitory and Chronic Inductive Drug Interactions: Experimental and Model-Based Approaches to Drug–Drug Interaction Trial Design. Člinical Pharmacology and Therapeutics, 2011, 89, 62 4.7 142 234-242. Discovery of Benzodiazepine Sulfonamide-Based Bombesin Receptor Subtype 3 Agonists and Their 2.8 Unusual Chirality. ACS Medicinal Chemistry Letters, 2011, 2, 933-937. Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and 64 6.3 43 does not predispose mice to diet-induced insulin resistance. Diabetologia, 2011, 54, 1457-1467. Pyridinesulfonylureas and pyridinesulfonamides as selective bombesin receptor subtype-3 (BRS-3) agonists. Bioorganic and Médicinal Chemistry Letters, 2011, 21, 2040-2043. Discovery of pyrimidine carboxamides as potent and selective CCK1 receptor agonists. Bioorganic and 2.2 66 12 Medicinal Chemistry Letters, 2011, 21, 2911-2915. Bombesin Receptor Subtype-3 (BRS-3) Regulates Glucose-Stimulated Insulin Secretion in Pancreatic 2.8 50 Islets across Multiple Species. Endocrinology, 2011, 152, 4106-4115. Heritability of the Weight Loss Response to Gastric Bypass Surgery. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1630-E1633. 68 3.6 76 Antiobesity Effect of MK-5046, a Novel Bombesin Receptor Subtype-3 Agonist. Journal of Pharmacology 69 44 and Experimental Therapeutics, 2011, 336, 356-364. Research highlights from the latest articles in diabetes research. Personalized Medicine, 2010, 7, 70 1.5 0 245-248. Discovery of substituted biphenyl imidazoles as potent, bioavailable bombesin receptor subtype-3 71 2.2 21 agonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1913-1917. Synthesis and SAR of derivatives based on 2-biarylethylimidazole as bombesin receptor subtype-3 (BRS-3) 72 2.2 26 agonists for the treatment of obesity. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2074-2077.

MARC L REITMAN

#	Article	IF	CITATIONS
73	Synthesis and SAR of heterocyclic carboxylic acid isosteres based on 2-biarylethylimidazole as bombesin receptor subtype-3 (BRS-3) agonists for the treatment of obesity. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2912-2915.	2.2	21
74	The effect of food intake on gene expression in human peripheral blood. Human Molecular Genetics, 2010, 19, 159-169.	2.9	44
75	Common body mass index-associated variants confer risk of extreme obesity. Human Molecular Genetics, 2010, 19, 3690-3691.	2.9	3
76	Body temperature as a mouse pharmacodynamic response to bombesin receptor subtype-3 agonists and other potential obesity treatments. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E816-E824.	3.5	24
77	Regulation of Energy Homeostasis by Bombesin Receptor Subtype-3: Selective Receptor Agonists for the Treatment of Obesity. Cell Metabolism, 2010, 11, 101-112.	16.2	78
78	The role of LMNA in adipose: a novel mouse model of lipodystrophy based on the Dunnigan-type familial partial lipodystrophy mutation. Journal of Lipid Research, 2009, 50, 1068-1079.	4.2	50
79	Common body mass index-associated variants confer risk of extreme obesity. Human Molecular Genetics, 2009, 18, 3502-3507.	2.9	106
80	Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nature Genetics, 2009, 41, 415-423.	21.4	257
81	Discovery of imidazole carboxamides as potent and selective CCK1R agonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4393-4396.	2.2	22
82	2-Substituted piperazine-derived imidazole carboxamides as potent and selective CCK1R agonists for the treatment of obesity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4833-4837.	2.2	27
83	Deficiency in Cytosolic Malic Enzyme Does Not Increase Acetaminophenâ€Induced Hepatoâ€Toxicity. Basic and Clinical Pharmacology and Toxicology, 2008, 103, 36-42.	2.5	9
84	Genetics of gene expression and its effect on disease. Nature, 2008, 452, 423-428.	27.8	1,209
85	Book Review Obesity: Genomics and Postgenomics Edited by Karine Clément and Thorkild I.A. SÃrensen. 576 pp., illustrated. New York, Informa Healthcare, 2008. \$249.95. 978-0-8493-8089-1. New England Journal of Medicine, 2008, 358, 2417-2418.	27.0	2
86	FGF21: A Missing Link in the Biology of Fasting. Cell Metabolism, 2007, 5, 405-407.	16.2	95
87	Why do obese patients not lose more weight when treated with low-calorie diets? A mechanistic perspective. American Journal of Clinical Nutrition, 2007, 85, 346-354.	4.7	195
88	Pharmacogenetics of metformin response: a step in the path toward personalized medicine. Journal of Clinical Investigation, 2007, 117, 1226-1229.	8.2	73
89	Diet Induction of Monocyte Chemoattractant Proteinâ€∎ and its Impact on Obesity. Obesity, 2005, 13, 1311-1320.	4.0	196
90	An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genetics, 2005, 37, 710-717.	21.4	967

6

#	Article	IF	CITATIONS
91	The fat and thin of lipin. Cell Metabolism, 2005, 1, 5-6.	16.2	13
92	Genetic Background (C57BL/6J Versus FVB/N) Strongly Influences the Severity of Diabetes and Insulin Resistance in ob/ob Mice. Endocrinology, 2004, 145, 3258-3264.	2.8	171
93	Increased Insulin Sensitivity in Paternal <i>Gnas</i> Knockout Mice Is Associated with Increased Lipid Clearance. Endocrinology, 2004, 145, 4094-4102.	2.8	79
94	Magic bullets melt fat. Nature Medicine, 2004, 10, 581-582.	30.7	9
95	Characterization of the bombesin-like peptide receptor family in primates. Genomics, 2004, 84, 139-146.	2.9	65
96	Liver Peroxisome Proliferator-activated Receptor Î ³ Contributes to Hepatic Steatosis, Triglyceride Clearance, and Regulation of Body Fat Mass. Journal of Biological Chemistry, 2003, 278, 34268-34276.	3.4	672
97	Opposite Effects of Background Genotype on Muscle and Liver Insulin Sensitivity of Lipoatrophic Mice. Journal of Biological Chemistry, 2003, 278, 3992-3999.	3.4	50
98	Peroxisome Proliferator-Activated Receptor-Â Agonist Treatment in a Transgenic Model of Type 2 Diabetes Reverses the Lipotoxic State and Improves Glucose Homeostasis. Diabetes, 2003, 52, 1770-1778.	0.6	173
99	Differential Effects of Rosiglitazone on Skeletal Muscle and Liver Insulin Resistance in A-ZIP/F-1 Fatless Mice. Diabetes, 2003, 52, 1311-1318.	0.6	87
100	Liver-specific disruption of PPARÎ ³ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. Journal of Clinical Investigation, 2003, 111, 737-747.	8.2	292
101	Liver-specific disruption of PPARÎ ³ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. Journal of Clinical Investigation, 2003, 111, 737-747.	8.2	498
102	Normal Thyroid Thermogenesis but Reduced Viability and Adiposity in Mice Lacking the Mitochondrial Glycerol Phosphate Dehydrogenase. Journal of Biological Chemistry, 2002, 277, 32892-32898.	3.4	64
103	Adrenalectomy Improves Diabetes in A-ZIP/F-1 Lipoatrophic Mice by Increasing Both Liver and Muscle Insulin Sensitivity. Diabetes, 2002, 51, 2113-2118.	0.6	42
104	WY14,643, a Peroxisome Proliferator-activated Receptor α (PPARα) Agonist, Improves Hepatic and Muscle Steatosis and Reverses Insulin Resistance in Lipoatrophic A-ZIP/F-1 Mice. Journal of Biological Chemistry, 2002, 277, 24484-24489.	3.4	171
105	Transplantation of Adipose Tissue Lacking Leptin Is Unable to Reverse the Metabolic Abnormalities Associated With Lipoatrophy. Diabetes, 2002, 51, 2727-2733.	0.6	136
106	Characterization of Adiposity and Metabolism in Lmna-Deficient Mice. Biochemical and Biophysical Research Communications, 2002, 291, 522-527.	2.1	61
107	M <scp>ETABOLIC</scp> L <scp>ESSONS FROM</scp> G <scp>ENETICALLY</scp> L <scp>EAN</scp> M <scp>ICE</scp> . Annual Review of Nutrition, 2002, 22, 459-482.	10.1	65
108	Leptin-Replacement Therapy for Lipodystrophy. New England Journal of Medicine, 2002, 346, 570-578.	27.0	1,130

#	Article	IF	CITATIONS
109	Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6494-6499.	7.1	655
110	The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Medicine, 2001, 7, 941-946.	30.7	4,370
111	Transgenic Overexpression of Leptin Rescues Insulin Resistance and Diabetes in a Mouse Model of Lipoatrophic Diabetes. Diabetes, 2001, 50, 1440-1448.	0.6	219
112	Leptin and its role in pregnancy and fetal development‒an overview. Biochemical Society Transactions, 2001, 29, 68.	3.4	29
113	Lipoatrophy syndromes: when â€~too little fat' is a clinical problem. Pediatric Diabetes, 2000, 1, 155-168.	2.9	18
114	Leptin and diabetes in lipoatrophic mice. Nature, 2000, 403, 850-850.	27.8	76
115	Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. Journal of Clinical Investigation, 2000, 105, 271-278.	8.2	554
116	Growth, Adipose, Brain, and Skin Alterations Resulting from Targeted Disruption of the Mouse Peroxisome Proliferator-Activated Receptor β(Î′). Molecular and Cellular Biology, 2000, 20, 5119-5128.	2.3	615
117	Lack of responses to a beta3-adrenergic agonist in lipoatrophic A-ZIP/F-1 mice. Diabetes, 2000, 49, 1910-1916.	0.6	57
118	Lack of Obesity and Normal Response to Fasting and Thyroid Hormone in Mice Lacking Uncoupling Protein-3. Journal of Biological Chemistry, 2000, 275, 16251-16257.	3.4	342
119	Mechanism of Insulin Resistance in A-ZIP/F-1 Fatless Mice. Journal of Biological Chemistry, 2000, 275, 8456-8460.	3.4	379
120	Lipoatrophy Revisited. Trends in Endocrinology and Metabolism, 2000, 11, 410-416.	7.1	193
121	Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. Journal of Clinical Investigation, 2000, 106, 1221-1228.	8.2	319
122	Paternal versus maternal transmission of a stimulatory G-protein \hat{I}_{\pm} subunit knockout produces opposite effects on energy metabolism. Journal of Clinical Investigation, 2000, 105, 615-623.	8.2	151
123	Effects of Insulin on Prenylation as a Mechanism of Potentially Detrimental Influence of Hyperinsulinemia. Endocrinology, 2000, 141, 1310-1316.	2.8	19
124	Torpor in mice is induced by both leptin-dependent and -independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14623-14628.	7.1	193
125	Characterization of the Mouse Sulfonylurea Receptor 1 Promoter and Its Regulation. Journal of Biological Chemistry, 1999, 274, 18261-18270.	3.4	33
126	Transgenic Mice Lacking White Fat: Models for Understanding Human Lipoatrophic Diabetes. Annals of the New York Academy of Sciences, 1999, 892, 289-296.	3.8	70

#	Article	IF	CITATIONS
127	Thyroid hormone and other regulators of uncoupling proteins. International Journal of Obesity, 1999, 23, S56-S59.	3.4	29
128	Genomic Organization and Regulation by Dietary Fat of the Uncoupling Protein 3 and 2 Genes. Biochemical and Biophysical Research Communications, 1999, 256, 27-32.	2.1	64
129	Life without white fat: a transgenic mouse. Genes and Development, 1998, 12, 3168-3181.	5.9	686
130	Chromatin Structure and Transcriptional Control Elements of the Erythroid Krüppel-like Factor (EKLF) Gene. Journal of Biological Chemistry, 1998, 273, 25031-25040.	3.4	30
131	Rat Mitochondrial <i>Glycerol-3-Phosphate Dehydrogenase</i> Gene: Multiple Promoters, High Levels in Brown Adipose Tissue, and Tissue-Specific Regulation by Thyroid Hormone. DNA and Cell Biology, 1998, 17, 301-309.	1.9	53
132	Chapter 3 Leptin. Advances in Molecular and Cellular Endocrinology, 1998, , 59-82.	0.1	0
133	Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes Journal of Clinical Investigation, 1998, 102, 1345-1351.	8.2	183
134	Regulation of Leptin Promoter Function by Sp1, C/EBP, and a Novel Factor. Endocrinology, 1998, 139, 1013-1022.	2.8	40
135	Identification of a Placental Enhancer for the Human Leptin Gene. Journal of Biological Chemistry, 1997, 272, 30583-30588.	3.4	163
136	Hyperleptinemia of Pregnancy Associated with the Appearance of a Circulating Form of the Leptin Receptor. Journal of Biological Chemistry, 1997, 272, 30546-30551.	3.4	215
137	Uncoupling Protein-3 Is a Mediator of Thermogenesis Regulated by Thyroid Hormone, β3-Adrenergic Agonists, and Leptin. Journal of Biological Chemistry, 1997, 272, 24129-24132.	3.4	687
138	Chromosomal Localization and Partial Genomic Structure of the Human Peroxisome Proliferator Activated Receptor-Gamma (hPPARÎ3) Gene. Biochemical and Biophysical Research Communications, 1997, 233, 756-759.	2.1	85
139	Cloning of the chicken insulin receptor substrate 1 gene. Gene, 1996, 178, 51-55.	2.2	20
140	Does Leptin Contribute to Diabetes Caused by Obesity?. Science, 1996, 274, 1151-0.	12.6	58
141	Identification of Functional Elements of the Chicken μ̃-Globin Promoter Involved in Stage-specific Interaction with the β/Ĩμ Enhancer. Journal of Biological Chemistry, 1996, 271, 25459-25467.	3.4	6
142	Expression of the Chicken β-Globin Gene Cluster in Mice: Correct Developmental Expression and Distributed Control. Molecular and Cellular Biology, 1995, 15, 407-414.	2.3	43
143	Function of the upstream hypersensitive sites of the chicken Â-globin gene cluster in mice. Nucleic Acids Research, 1995, 23, 1790-1794.	14.5	12
144	The Mouse obese Gene. Journal of Biological Chemistry, 1995, 270, 28887-28891.	3.4	141

#	Article	IF	CITATIONS
145	Primary sequence, evolution, and repetitive elements of the Gallusgallus (chicken) β -globin cluster. Genomics, 1993, 18, 616-626.	2.9	40
146	Developmental regulation of globin gene expression. Journal of Cell Science, 1992, 1992, 15-20.	2.0	21
147	Site-independent expression of the chicken βA-globin gene in transgenic mice. Nature, 1990, 348, 749-752.	27.8	108
148	Control of Globin Gene Transcription. Annual Review of Cell Biology, 1990, 6, 95-124.	26.1	181
149	Sequence similarities among monkey ori-enriched (ors) fragments. Gene, 1990, 87, 233-242.	2.2	48
150	Mutational analysis of the chicken beta-globin enhancer reveals two positive-acting domains Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6267-6271.	7.1	133
151	An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 5976-5980.	7.1	505
152	Epithelial chloride channel. Development of inhibitory ligands Journal of General Physiology, 1987, 90, 779-798.	1.9	156
153	UDP-N-acetylglucosamine: Lysosomal enzyme N-acetylglucosamine-1-phosphotransferase. Methods in Enzymology, 1984, 107, 163-172.	1.0	32
154	Studies of the synthesis, structure and function of the phosphorylated oligosaccharides of lysosomal enzymes. Journal of Biosciences, 1983, 5, 101-104.	1.1	0
155	Developmental changes in glycoproteins of the chick nervous system. Brain Research, 1981, 206, 51-70.	2.2	26
156	Identification of a variant of mucolipidosis III (pseudo-Hurler polydystrophy): a catalytically active N-acetylglucosaminylphosphotransferase that fails to phosphorylate lysosomal enzymes Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 7773-7777.	7.1	89
157	Fibroblasts from patients with I-cell disease and pseudo-Hurler polydystrophy are deficient in uridine 5'-diphosphate-N-acetylglucosamine: glycoprotein N-acetylglucosaminylphosphotransferase activity Journal of Clinical Investigation, 1981, 67, 1574-1579.	8.2	307
158	Preoptic bombesin-like receptor-3 neurons heat it up. Temperature, 0, , 1-4.	3.0	0