
Kimihiko Kato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/259874/publications.pdf Version: 2024-02-01

KIMIHIKO KATO

#	Article	IF	CITATIONS
1	ON current enhancement and variability suppression in tunnel FETs by the isoelectronic trap impurity of beryllium. Japanese Journal of Applied Physics, 2021, 60, SBBA01.	1.5	2
2	RF reflectometry for readout of charge transition in a physically defined p-channel MOS silicon quantum dot. Japanese Journal of Applied Physics, 2021, 60, SBBI07.	1.5	8
3	Advanced CMOS technologies for ultra-low power logic and AI applications. , 2021, , .		2
4	Development of Integrated Device Simulator for Quantum Bit Design: Self-consistent Calculation for Quantum Transport and Qubit Operation. , 2021, , .		1
5	7â€5: <i>Invited Paper:</i> Bilayer Tunneling Field Effect Transistors using Oxide Semiconductor/Groupâ€ŀV Semiconductor Heteroâ€structures. Digest of Technical Papers SID International Symposium, 2021, 52, 73-76.	0.3	0
6	Si bilayer tunnel field-effect transistor structure realized using tilted ion-implantation technique. Solid-State Electronics, 2021, 180, 107993.	1.4	2
7	Buried nanomagnet realizing high-speed/low-variability silicon spin qubits: implementable in error-correctable large-scale quantum computers. , 2021, , .		1
8	Electron beam lithography with negative tone resist for highly integrated silicon quantum bits. Nanotechnology, 2021, 32, 485301.	2.6	7
9	4.2ÂK sensitivity-tunable radio frequency reflectometry of a physically defined p-channel silicon quantum dot. Scientific Reports, 2021, 11, 20039.	3.3	0
10	Impact of Switching Voltage on Complementary Steep-Slope Tunnel Field Effect Transistor Circuits. IEEE Transactions on Electron Devices, 2020, 67, 3876-3882.	3.0	1
11	Metal–oxide–semiconductor interface properties of TiN/Y2O3/Si0.62Ge0.38 gate stacks with high temperature post-metallization annealing. Journal of Applied Physics, 2020, 127, .	2.5	10
12	p-Channel TFET Operation of Bilayer Structures With Type-II Heterotunneling Junction of Oxide- and Group-IV Semiconductors. IEEE Transactions on Electron Devices, 2020, 67, 1880-1886.	3.0	15
13	Improvement in Electrical Characteristics of ZnSnO/Si Bilayer TFET by W/Alâ,,Oâ,ƒ Gate Stack. IEEE Journal of the Electron Devices Society, 2020, 8, 341-345.	2.1	4
14	Accurate evaluation of specific contact resistivity between InAs/Ni–InAs alloy using a multi-sidewall transmission line method. Japanese Journal of Applied Physics, 2020, 59, SGGA08.	1.5	5
15	Source engineering for bilayer tunnel field-effect transistor with hetero tunnel junction: thickness and impurity concentration. Applied Physics Express, 2020, 13, 074004.	2.4	7
16	Mechanism of extraordinary gate-length dependence of quantum dot operation in isoelectronic-trap-assisted tunnel FETs. Applied Physics Express, 2020, 13, 114001.	2.4	1
17	Advanced MOS Device Technology for Low Power Logic LSI. , 2019, , .		0
18	Group IV Based Bi-Layer Tunneling Field Effect Transistor. ECS Transactions, 2019, 93, 23-27.	0.5	1

Кімініко Като

#	Article	IF	CITATIONS
19	Material design of oxide-semiconductor/group-IV-semiconductor bilayer tunneling field effect transistors. , 2019, , .		1
20	Fabrication and Electrical Characteristics of ZnSnO/Si Bilayer Tunneling Filed-Effect Transistors. IEEE Journal of the Electron Devices Society, 2019, 7, 1201-1208.	2.1	7
21	(Invited) Tunneling FET Device Technology for Ultra-Low Power Integrated Circuits. ECS Transactions, 2019, 92, 59-69.	0.5	0
22	Bilayer tunneling field effect transistor with oxide-semiconductor and group-IV semiconductor hetero junction: Simulation analysis of electrical characteristics. AIP Advances, 2019, 9, 055001.	1.3	14
23	ZnO/Si and ZnO/Ge bilayer tunneling field effect transistors: Experimental characterization of electrical properties. Journal of Applied Physics, 2019, 125, .	2.5	12
24	Electrical characteristic of atomic layer deposition La ₂ O ₃ /Si MOSFETs with ferroelectric-type hysteresis. Japanese Journal of Applied Physics, 2019, 58, SBBA05.	1.5	11
25	Effects of ZrO ₂ /Al ₂ O ₃ Gate-Stack on the Performance of Planar-Type InGaAs TFET. IEEE Transactions on Electron Devices, 2019, 66, 1862-1867.	3.0	25
26	Fabrication of thin body InAs-on-insulator structures by Smart Cut method with H ⁺ implantation at room temperature. Japanese Journal of Applied Physics, 2019, 58, SBBA03.	1.5	9
27	Thermal properties of Ill–V on a SiC platform for photonic integrated circuits. Japanese Journal of Applied Physics, 2019, 58, SBBE06.	1.5	5
28	Fabrication of High Quality InAs-on-Lnsulator Structures by Smart Cut Process with Reuse of InAs Wafers. , 2019, , .		0
29	Group IV/oxide semiconductor bi-layer tunneling FET. , 2019, , .		0
30	Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array. ACS Nano, 2018, 12, 2231-2241.	14.6	32
31	TiN/Al2O3/ZnO gate stack engineering for top-gate thin film transistors by combination of post oxidation and annealing. Applied Physics Letters, 2018, 112, .	3.3	11
32	(Invited) Ultrathin-Body Ge-on-Insulator MOSFET and TFET Technologies. ECS Transactions, 2018, 86, 75-86.	0.5	3
33	Cost-efficient sub-lithographic patterning with tilted-ion implantation (TII). , 2018, , .		1
34	Influence of impurity concentration in Ge sources on electrical properties of Ge/Si hetero-junction tunneling field-effect transistors. Applied Physics Letters, 2018, 113, 062103.	3.3	12
35	(Invited)Ultra-Low Power III-V-Based MOSFETs and Tunneling FETs. ECS Transactions, 2018, 85, 27-37.	0.5	4
36	A Novel Gate-Normal Tunneling Field-Effect Transistor With Dual-Metal Gate. IEEE Journal of the Electron Devices Society, 2018, 6, 1070-1076.	2.1	13

Кімініко Като

#	Article	IF	CITATIONS
37	There's plenty of room at the top. , 2017, , .		9
38	There's still plenty of room at the bottom $\hat{a} \in \rakepsilon$ And at the Top. , 2017, , .		2
39	Sub-lithographic Patterning via Tilted Ion Implantation for Scaling Beyond the 7-nm Technology Node. IEEE Transactions on Electron Devices, 2017, 64, 231-236.	3.0	6
40	Experimental observation of type-I energy band alignment in lattice-matched Ge1â~' <i>x</i> â~' <i>y</i> Si <i>x</i> Sn <i>y</i> /Ge heterostructures. Applied Physics Letters, 2016, 108, .	3.3	23
41	Embedded Nano-Electro-Mechanical Memory for Energy-Efficient Reconfigurable Logic. IEEE Electron Device Letters, 2016, 37, 1563-1565.	3.9	17
42	Tilted ion implantation as a cost-efficient sublithographic patterning technique. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 040608.	1.2	8
43	Enhanced patterning by tilted ion implantation. Proceedings of SPIE, 2016, , .	0.8	4
44	Non-Volatile Nano-Electro-Mechanical Memory for Energy-Efficient Data Searching. IEEE Electron Device Letters, 2016, 37, 31-34.	3.9	20
45	Sub-5 nm gap formation for low power NEM switches. , 2015, , .		1
46	Oxygen and germanium migration at low temperature influenced by the thermodynamic nature of the materials used in germanium metal-insulator-semiconductor structures. Applied Physics Letters, 2015, 107, .	3.3	6
47	Sustaining the silicon revolution: From 3-D transistors to 3-D integration. , 2015, , .		0
48	Formation of chemically stable GeO2 on the Ge surface with pulsed metal–organic chemical vapor deposition. Applied Physics Letters, 2015, 106, 062107.	3.3	5
49	Importance of Ge surface oxidation with high oxidation rate in obtaining low interface state density at oxide/Ge interfaces. Japanese Journal of Applied Physics, 2014, 53, 08LD02.	1.5	1
50	Reduction of Schottky barrier height for n-type Ge contact by using Sn electrode. Japanese Journal of Applied Physics, 2014, 53, 04EA06.	1.5	12
51	Formation of high-quality oxide/Ge1â°'xSnx interface with high surface Sn content by controlling Sn migration. Applied Physics Letters, 2014, 105, 122103.	3.3	19
52	Formation and crystalline structure of Ni silicides on Si(110) substrate. Japanese Journal of Applied Physics, 2014, 53, 05GA12.	1.5	4
53	Robustness of Sn precipitation during thermal oxidation of Ge _{1â^'} <i>_x</i> Sn <i>_x</i> on Ge(001). Japanese Journal of Applied Physics, 2014, 53, 08LD04.	1.5	10
54	Interface properties of Al ₂ O ₃ /Ge structures with thin Ge oxide interfacial layer formed by pulsed metal organic chemical vapor deposition. Japanese Journal of Applied Physics, 2014, 53, 08LD03.	1.5	9

Кімініко Като

#	Article	IF	CITATIONS
55	Importance of control of oxidant partial pressure on structural and electrical properties of Pr-oxide films. Thin Solid Films, 2014, 557, 276-281.	1.8	4
56	Stabilized formation of tetragonal ZrO2 thin film with high permittivity. Thin Solid Films, 2014, 557, 192-196.	1.8	22
57	Impacts of AlGeO formation by post thermal oxidation of Al2O3/Ge structure on interfacial properties. Thin Solid Films, 2014, 557, 282-287.	1.8	15
58	Understanding of interface structures and reaction mechanisms induced by Ge or GeO diffusion in Al2O3/Ge structure. Applied Physics Letters, 2013, 103, .	3.3	12
59	Effect of gate metal on chemical bonding state in metal/Pr-oxide/Ge gate stack structure. Solid-State Electronics, 2013, 83, 56-60.	1.4	2
60	Effects of Light Exposure during Plasma Processing on Electrical Properties of GeO2/Ge Structures. Japanese Journal of Applied Physics, 2013, 52, 01AC04.	1.5	0
61	Interfacial Reaction Mechanisms in Al ₂ O ₃ /Ge Structure by Oxygen Radical Process. Japanese Journal of Applied Physics, 2013, 52, 04CA08.	1.5	9
62	Effect of Interfacial Reactions in Radical Process on Electrical Properties of Al2O3/Ge Gate Stack Structure. Journal of Physics: Conference Series, 2013, 417, 012001.	0.4	3
63	Characterization of Damage of Al\$_{2}\$O\$_{3}\$/Ge Gate Stack Structure Induced with Light Radiation during Plasma Nitridation. Japanese Journal of Applied Physics, 2012, 51, 01AJ01.	1.5	1
64	Improvement of Al2O3/Ge interfacial properties by O2-annealing. Thin Solid Films, 2012, 520, 3397-3401.	1.8	16
65	Control of interfacial properties of Pr-oxide/Ge gate stack structure by introduction of nitrogen. Solid-State Electronics, 2011, 60, 70-74.	1.4	5
66	Analysis of Local Leakage Current of Pr-Oxide Thin Films with Conductive Atomic Force Microscopy. Japanese Journal of Applied Physics, 2011, 50, 04DA08.	1.5	3
67	Control of Interfacial Properties of Al ₂ O ₃ /Ge Gate Stack Structure Using Radical Nitridation Technique. Japanese Journal of Applied Physics, 2011, 50, 10PE02.	1.5	6
68	Effect of Pr Valence State on Interfacial Structure and Electrical Properties of Pr Oxide/PrON/Ge Gate Stack Structure. Japanese Journal of Applied Physics, 2011, 50, 04DA17.	1.5	2
69	Effect of Pr Valence State on Interfacial Structure and Electrical Properties of Pr Oxide/PrON/Ge Gate Stack Structure. Japanese Journal of Applied Physics, 2011, 50, 04DA17.	1.5	2
70	Formation processes of Ge3N4 films by radical nitridation and their electrical properties. Thin Solid Films, 2010, 518, S226-S230.	1.8	19