Athanassios C Tsipis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2598146/publications.pdf

Version: 2024-02-01

218677 223800 2,496 101 26 46 citations g-index h-index papers 109 109 109 3301 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selective capture of hexavalent chromium from an anion-exchange column of metal organic resin–alginic acid composite. Chemical Science, 2016, 7, 2427-2436.	7.4	158
2	All in one porous material: exceptional sorption and selective sensing of hexavalent chromium by using a Zr ⁴⁺ MOF. Journal of Materials Chemistry A, 2017, 5, 14707-14719.	10.3	150
3	Hydrometal Analogues of Aromatic Hydrocarbons:Â A New Class of Cyclic Hydrocoppers(I). Journal of the American Chemical Society, 2003, 125, 1136-1137.	13.7	118
4	Copper(I) Halide Complexes with 1,3-Propanebis(diphenylphosphine) and Heterocyclic Thione Ligands: Â Crystal and Electronic Structures (DFT) of [CuCl(pymtH)(dppp)], [CuBr(pymtH)(dppp)], and [Cu($1\frac{1}{4}$ -I)(dppp)]2. Inorganic Chemistry, 2002, 41, 6875-6886.	4.0	104
5	Aromatic Gold and Silver †Rings': Hydrosilver(I) and Hydrogold(I) Analogues of Aromatic Hydrocarbons. Journal of the American Chemical Society, 2004, 126, 12916-12929.	13.7	98
6	Experimental and Theoretical Study of the Antisymmetric Magnetic Behavior of Copper <i>inverse</i> -9-Metallacrown-3 Compounds. Inorganic Chemistry, 2008, 47, 7545-7555.	4.0	71
7	Alkaline Earth Metal Ion/Dihydroxy–Terephthalate MOFs: Structural Diversity and Unusual Luminescent Properties. Inorganic Chemistry, 2015, 54, 5813-5826.	4.0	71
8	The Role of the 5f Orbitals in Bonding, Aromaticity, and Reactivity of Planar Isocyclic and Heterocyclic Uranium Clusters. Journal of the American Chemical Society, 2008, 130, 9144-9155.	13.7	69
9	Efficiency of the NICSzz-scan curves to probe the antiaromaticity of organic and inorganic rings/cages. Physical Chemistry Chemical Physics, 2009, 11, 8244.	2.8	68
10	Exceptional TcO ₄ ^{â°'} sorption capacity and highly efficient ReO ₄ ^{â°'} luminescence sensing by Zr ⁴⁺ MOFs. Journal of Materials Chemistry A, 2018, 6, 20813-20821.	10.3	54
11	Structure, Energetics, and Bonding of First Row Transition Metal Pentazolato Complexes:Â A DFT Study. Inorganic Chemistry, 2004, 43, 1273-1286.	4.0	48
12	DNA interaction studies and evaluation of biological activity of homo- and hetero-trihalide mononuclear Cu(II) Schiff base complexes. Quantitative structure–activity relationships. Journal of Inorganic Biochemistry, 2008, 102, 1749-1764.	3.5	45
13	Ligand-Stabilized Aromatic Three-Membered Gold Rings and Their Sandwichlike Complexes. Journal of the American Chemical Society, 2005, 127, 10623-10638.	13.7	43
14	3d/4f Coordination Clusters as Cooperative Catalysts for Highly Diastereoselective Michael Addition Reactions. Inorganic Chemistry, 2017, 56, 9563-9573.	4.0	43
15	Synthesis of Homo- or Hetero-trinuclear Palladium(II)/Platinum(II) Compounds with Bridging Phosphido Ligands. Crystal and Electronic Structures (DFT) of [N(PPh3)2]2[Pt3(μ-PPh2)4(C6F5)4] and of Its Oxidation Product [Pt3(C6F5)4(μ-PPh2)4]â€. Organometallics, 2001, 20, 5571-5582.	2.3	40
16	Electronic Structure and Optical Properties of Mixed Phenylene Vinylene/Phenylene Ethynylene Conjugated Oligomers. Chemistry of Materials, 2002, 14, 1362-1368.	6.7	38
17	Formation of PPh2C6F5through Phosphido Platinum and/or Palladium(III) Intermediates‖,⊥. Organometallics, 2006, 25, 1084-1091.	2.3	38
18	Accurate prediction of ¹⁹⁵ Pt NMR chemical shifts for a series of Pt(<scp>ii</scp>) and Pt(<scp>iv</scp>) antitumor agents by a non-relativistic DFT computational protocol. Dalton Transactions, 2014, 43, 5409-5426.	3.3	36

#	Article	IF	CITATIONS
19	Experimental and Quantum Chemical Study of the Mechanism of an Unexpected Intramolecular Reductive Coupling of a Bridging Phosphido Ligand and a C6F5Group and the Reversible Oxidative Addition of PPh2C6F5#,‗. Organometallics, 2004, 23, 1797-1810.	2.3	35
20	DFT/TDDFT insights into the chemistry, biochemistry and photophysics of copper coordination compounds. RSC Advances, 2014, 4, 32504-32529.	3.6	33
21	Diagnosis of the $ f_{-} \in Aromaticity$ by the Shape of the NICSzz-Scan Curves and Symmetry-Based Selection Rules. Symmetry, 2010, 2, 284-319.	2,2	32
22	Oxidative Addition of Halogens to Homoleptic Perfluoromethyl or Perfluorophenyl Derivatives of Platinum(II): A Comparative Study. Chemistry - A European Journal, 2009, 15, 6371-6382.	3.3	28
23	Oxidovanadium(IV/V) Complexes as New Redox Mediators in Dye-Sensitized Solar Cells: A Combined Experimental and Theoretical Study. Inorganic Chemistry, 2015, 54, 3979-3988.	4.0	28
24	One-Pot and Step-by-Step N-Assisted C _{Ph} \hat{a} 'H Activation in 2-(4-Bromophenyl)imidazol[1,2- <i>a</i> pyridine: Synthesis of a New C,N-Cyclometalated Compound [{Pt(C ^{\hat{a}\$} N)(\hat{l} 4-Cl)} ₂] as Precursor of Luminescent Platinum(II) Compounds. Organometallics, 2010, 29, 1396-1405.	2.3	25
25	An Exploration of the Structural and Bonding Variability in Mixed-Ligand Benzimidazole-2-thione(bromo)(triarylphosphane)dicopper(I) Complexes with Diamond-Shaped Cu2(?-X)2 Core Structures. European Journal of Inorganic Chemistry, 2005, 2005, 1442-1452.	2.0	24
26	All-Organometallic Analogues of Zeise's Salt for the Three Group 10 Metals. Organometallics, 2005, 24, 3539-3546.	2.3	24
27	Mechanistic aspects of the complete set of hydrolysis and anation reactions of cis - and trans -DDP related to their antitumor activity modeled by an improved ASED-MO approach. Computational and Theoretical Chemistry, 2002, 584, 235-248.	1.5	23
28	First light-emitting electrochemical cell with $[Ag(\scp>i)(N^N)(P^P)]$ type complex. RSC Advances, 2015, 5, 95047-95053.	3.6	21
29	Molecular geometries, electronic structures and energetics of neutral and cationic mono-ligated ammonia complexes of the d-block elements calculated by an improved modified ASED[ndash]MO model. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 11-24.	1.7	20
30	Structural and Spectroscopic Properties of New Copper(I) Complexes with 1,1,1â€Tris(diphenylphosphanylmethyl)ethane and Heterocyclic Thiolates. European Journal of Inorganic Chemistry, 2008, 2008, 5029-5037.	2.0	20
31	Cobalt(<scp>ii</scp> / <scp>iii</scp>), nickel(<scp>ii</scp>) and copper(<scp>ii</scp>) coordination clusters employing a monoanionic Schiff base ligand: synthetic, topological and computational mechanistic aspects. CrystEngComm, 2015, 17, 6753-6764.	2.6	20
32	Shedding light on the use of Cu(<scp>ii</scp>)-salen complexes in the A ³ coupling reaction. Dalton Transactions, 2020, 49, 289-299.	3.3	20
33	A new class of "all-metal―aromatic hydrido-bridged binary coinage metal heterocycles. A DFT study. New Journal of Chemistry, 2007, 31, 852-859.	2.8	19
34	Synthesis and Characterization of the Double Salts [Pt(bzq)(CNR) ₂] with Significant Pt···Pt and π···΀ Interactions. Mechanistic Insights into the Ligand Exchange Process from Joint Experimental and DFT Study. Organometallics, 2012, 31, 2729-2740.	2.3	19
35	Ab initio and density functional electronic structure study of molybdenum oxide clusters. Physical Chemistry Chemical Physics, 2000, 2, 1357-1363.	2.8	18
36	Molecular Transition Metal Oxides:  Ab Initio and Density Functional Electronic Structure Study of Tungsten Oxide Clusters. Journal of Physical Chemistry A, 2000, 104, 859-865.	2.5	18

#	Article	IF	Citations
37	Exploring the Forces That Control the Pâ^'C Bond Length in Phosphamides and Their Complexes:Â The Key Role of Hyperconjugation. Organometallics, 2006, 25, 2774-2781.	2.3	18
38	Unveiling the Nature of Binding Interactions of Acetylene and Ethylene with Triangular Coinage Metal Clusters: A DFT Computational Study. Organometallics, 2010, 29, 354-363.	2.3	18
39	Diagnosis of magnetoresponsive aromatic and antiaromatic zones in threeâ€membered rings of <i>d</i> ― and <i>f</i> â€block elements. Journal of Computational Chemistry, 2010, 31, 431-446.	3.3	17
40	Aquanitrato Complexes of Palladium, Rhodium, and Platinum: A Comparative 15 N NMR and DFT Study. European Journal of Inorganic Chemistry, 2018, 2018, 627-639.	2.0	17
41	A theoretical study of molecular titanium oxide clusters: structure, bonding, vibrations and stability. Physical Chemistry Chemical Physics, 1999, 1, 4453-4458.	2.8	16
42	An Experimental and Density Functional Study of the Interaction of Cull Complexes of Diethylenetriamine (Dien) with Pyridine, Nicotinic Acid, and Nicotinamide: The Crystal Structure of [Cu(dien)(nicotinamide)(NO3)2]. European Journal of Inorganic Chemistry, 2006, 2006, 2083-2095.	2.0	16
43	Building trans-philicity (trans-effect/trans-influence) ladders for octahedral complexes by using an NMR probe. Dalton Transactions, 2019, 48, 1814-1822.	3.3	16
44	Alkylamino-terephthalate ligands stabilize 8-connected Zr ⁴⁺ MOFs with highly efficient sorption for toxic Se species. Journal of Materials Chemistry A, 2021, 9, 3379-3387.	10.3	16
45	Synthesis and Reactivity of the Unsaturated Trinuclear Phosphanido Complex [(C ₆ F ₅) ₂ Pt(ν-PPh ₂)(sub>2Pt(ν-PPh ₂)(sub>2Pt(ν-PPh ₂)(sub>2<) ≪⊾o b>2<	:/s ub >Pt(PP
46	Synthesis, structural and physicochemical characterization of a new type Ti ₆ -oxo cluster protected by a cyclic imide dioxime ligand. Dalton Transactions, 2019, 48, 5551-5559.	3.3	15
47	From a 44-electron to a 48-electron trinuclear phosphido platinum complex: density functional study of [{(CF3)(PH3)Pt(μ-PH2)(μ-H)}2Pt] and [{(CF3)(PH3)Pt(μ-PH2)(μ-I)}2Pt] model compounds. Inorganica C Acta, 2005, 358, 1377-1385.	hi z nica	14
48	<i>Trans</i> â€philicity (<i>trans</i> â€influence/ <i>trans</i> â€effect) ladders for square planar platinum(II) complexes constructed by ³⁵ Cl NMR probe. Journal of Computational Chemistry, 2019, 40, 2550-2562.	3.3	14
49	DFT insights into the photocatalytic reduction of CO ₂ to CO by Re(<scp>i</scp>) complexes: the crucial role of the triethanolamine "magic―sacrificial electron donor. Dalton Transactions, 2021, 50, 14797-14809.	3.3	13
50	Synthesis and Characterization of New Five-Coordinate Platinum Nitrosyl Derivatives: Density Functional Theory Study of Their Electronic Structure. Chemistry - A European Journal, 2003, 9, 4094-4105.	3.3	12
51	Theoretical Study on the Mechanism of Reaction of Ground-State Fe Atoms with Carbon Dioxide. Collection of Czechoslovak Chemical Communications, 2004, 69, 13-33.	1.0	12
52	Unraveling the Origin of the Peculiar Reaction Field of Triruthenium Ring Core Structures. Journal of the American Chemical Society, 2007, 129, 13905-13922.	13.7	12
53	Shedding Light on Intermolecular Metal–Organic Ring Interactions by Theoretical Studies. ChemPlusChem, 2012, 77, 354-360.	2.8	12
54	Molecular and Electronic Structure, Magnetotropicity and Absorption Spectra of Benzene–Trinuclear Copper(I) and Silver(I) Trihalide Columnar Binary Stacks. Inorganic Chemistry, 2012, 51, 2541-2559.	4.0	11

#	Article	IF	CITATIONS
55	Face-to-Face Stacks of Trinuclear Gold(I) Trihalides with Benzene, Hexafluorobenzene, and Borazine: Impact of Aromaticity on Stacking Interactions. Inorganic Chemistry, 2013, 52, 1047-1060.	4.0	11
56	Highly Efficient Sorption of Methyl Orange by a Metal–Organic Resin–Alginic Acid Composite. ChemPlusChem, 2017, 82, 1188-1196.	2.8	11
57	Quantum chemical study of the coordination of glycolic acid conformers and their conjugate bases to [Ca(OH2)n]2+ (n=0–4) ions. Computational and Theoretical Chemistry, 2003, 630, 81-100.	1.5	10
58	Synthesis, structural and theoretical studies of a rare hexameric water cluster held in the lattice of {[Zn(HL)(phen)(H2O)]â^™3(H2O)}2 (H3L=trans-aconitic acid). Inorganic Chemistry Communication, 2011, 14, 87-91.	3.9	10
59	Loading Aromatic Six-Membered Carbocyclic Rings with Coinage Metals: Aromatic Metalated Benzenes C6M6 and 1,3,5-C6H3M3 (M = Cu, Ag, Au) Exhibiting Intriguing Properties. Organometallics, 2012, 31, 7206-7212.	2.3	10
60	Accurate prediction of ¹⁹⁵ Pt-NMR chemical shifts for hydrolysis products of [PtCl ₆] ^{2â^'} in acidic and alkaline aqueous solutions by non-relativistic DFT computational protocols. Journal of Coordination Chemistry, 2015, 68, 3788-3804.	2.2	10
61	Ab Initio Quantum Chemical Study of the Coordination Preferences and Catalytic Role of Cu+ Ions in the Dehydration Reactions of Hydroxyformaldoxime Conformers and the Oxidation of HCN to Hydroxyformaldoxime by Hydrogen Peroxide. Journal of Physical Chemistry A, 2002, 106, 1425-1440.	2.5	9
62	Prediction of ¹⁹⁵ Pt NMR of photoactivable diazido―and azineâ€Pt(IV) anticancer agents by DFT computational protocols. Magnetic Resonance in Chemistry, 2017, 55, 145-153.	1.9	9
63	Design and Assembly of Covalently Functionalised Polyoxofluorovanadate Molecular Hybrids. Chemistry - A European Journal, 2018, 24, 3836-3845.	3.3	9
64	Synthesis, characterization, DNA-binding properties and electronic structure (DFT) of ruthenium oligopyridine complexes. Inorganic Chemistry Communication, 2008, 11, 1341-1346.	3.9	8
65	Structural, electronic, bonding, magnetic, and optical properties of bimetallic [Ru _{<i>n< i></i>} Au _{<i>m< i></i>}] ^{0/+} (<i>n</i> + <i>m</i>) â‰\$) clusters. Journal of Computational Chemistry, 2010, 31, 2836-2852.	3.3	8
66	Structural, electronic, and magnetoresponsive properties of triangular lanthanide clusters and their freeâ€standing nitrides. Journal of Computational Chemistry, 2011, 32, 620-638.	3.3	7
67	Synthesis, Bonding, and Reactivity of Vanadium(IV) Oxidoâ€"Fluorido Compounds with Neutral Chelate Ligands of the General Formula ⟨i>cis-[V ^{IV} (â•O)(F)(L _{Nâ€"N}) ₂] ⁺ . Inorganic Chemistry, 2016. 55. 1364-1366.	4.0	7
68	Synthesis, Structural, and Physicochemical Characterization of a Ti ₆ and a Unique Type of Zr ₆ Oxo Clusters Bearing an Electron-Rich Unsymmetrical {OON} Catecholate/Oxime Ligand and Exhibiting Metalloaromaticity. Inorganic Chemistry, 2020, 59, 18345-18357.	4.0	7
69	NMR probe effects on <i>trans</i> -philicity and <i>trans</i> -influence ladders in square planar Pt(<scp>ii</scp>) complexes. New Journal of Chemistry, 2020, 44, 7976-7986.	2.8	7
70	Deciphering the bonding mode of the trihalide ligands in a series of halogen carrier homo- and hetero-trihalide Cu(II) Schiff base complexes. Polyhedron, 2008, 27, 289-298.	2.2	6
71	Probing the electronic structure, chemical bonding, and excitation spectra of [CuE] ^{+/0/â^'} (E = 14 group element) diatomics employing DFT and <i>ab initio</i> methods. Journal of Computational Chemistry, 2012, 33, 2318-2331.	3.3	6
72	Shedding light on the bonding, photophysical and magnetotropic properties of triangular Pt3complexes and their "open-face―TlPt3half-sandwiches. Dalton Transactions, 2013, 42, 2201-2212.	3.3	6

#	Article	IF	CITATIONS
73	The molecular, electronic, bonding, and photophysical features of the [(c-Pt3)Tl(c-Pt3)]+ inorganic metallocenes. Dalton Transactions, 2013, 42, 8307.	3.3	6
74	Sequential metalation of benzene: electronic, bonding, magnetotropic and spectroscopic properties of coinage metalated benzenes studied by DFT. Journal of Molecular Modeling, 2015, 21, 153.	1.8	6
7 5	Prediction of 195 Pt NMR chemical shifts of dissolution products of H2 [Pt(OH)6] in nitric acid solutions by DFT methods: how important are the counter-ion effects?. Magnetic Resonance in Chemistry, 2016, 54, 656-664.	1.9	6
76	Synthesis of new photosensitive $H2BBQ2+[ZnCl4]2â^'/[(ZnCl)22H2O$ to $H2O2Dalton Transactions, 2017, 46, 3688-3699.$	3.3	6
77	Density functional study of configurational, conformational, energetic, electronic and spectroscopic properties of fluorohydroxyformaldoxime and its dehydration products. Physical Chemistry Chemical Physics, 1999, 1, 4541-4547.	2.8	5
78	Conformational preferences, rotational barriers and energetics of purine nucleobase rotation and dissociation in square planar platinum(II) antitumour complexes: Structure–activity correlation. Physical Chemistry Chemical Physics, 2001, 3, 5165-5172.	2.8	5
79	Binding of cerium monoxide to annulenes and buckybowls. Physical Chemistry Chemical Physics, 2012, 14, 14917.	2.8	5
80	Interaction of Elemental Mercury with a Diverse Series of π-Organic Substrates Probed by Computational Methods: Is Mercury Fixation Possible?. ACS Earth and Space Chemistry, 2018, 2, 451-461.	2.7	5
81	Dinuclear and Mononuclear Rhenium Coordination Compounds upon Employment of a Schiff-Base Triol Ligand: Structural, Magnetic, and Computational Studies. Inorganic Chemistry, 2019, 58, 8596-8606.	4.0	5
82	Upright or In-Plane Conformational Preference: Dilemma of \hat{i} -2-Coordinated Câ•C Double Bond in PtX2(CO)(\hat{i} -2-ene) (X = H, Cl, or C6F5) Complexes. Organometallics, 2008, 27, 3701-3713.	2.3	4
83	Structure and properties of a rhodium(III) pentanitrato complex embracing uni- and bidentate nitrato ligands. Polyhedron, 2018, 147, 69-74.	2.2	4
84	Polynuclear ampyrone based 3d coordination clusters. CrystEngComm, 2018, 20, 1411-1421.	2.6	4
85	Electronic structure calculations on multiply charged anions containing MS bonds (M = Cr, Mo, W) and their heterobimetallic cluster complexes. International Journal of Quantum Chemistry, 2007, 107, 418-439.	2.0	3
86	Modeling the cysteamine catalyzed cysteine proteinases using DFT: mechanistic insights into the hydrolysis of acetyl-p-nitroanilide. New Journal of Chemistry, 2013, 37, 4061.	2.8	3
87	Influence of the metal salt on the self-assembly of isophthaloylbis-β-alanine and Cu(II) ion. Polyhedron, 2015, 89, 313-321. Electronic, bonding, and optical properties of 1d [<scp>C</scp> u <scp>CN</scp>] <i>_n</i>	2.2	3
88	(<i>n</i> \$\delta \in \alpha \in	: 2–] 3 . 3	10) 3
	[⟨scp⟩Č⟨ scp⟩u⟨i⟩⟨sub⟩n⟨ sub⟩⟨ i⟩(⟨scp⟩CN⟨ scp⟩)⟨i⟩⟨sub⟩n⟨ sub⟩⟨ i⟩ (⟨i⟩n⟨ i⟩ = 4, ⟨i⟩m⟨ i⟩ = 2, 3; ⟨i⟩n⟨ i⟩ = 10, ⟨i⟩m⟨ i⟩ = 2) tubes studied b	y DFT/TDâ	
89	Computational Chemistry, 2015, 36, 1334-1347. (1) cis (i) cis i) and (i) trans -ligand Effects on the Inverse ⟨i>trans -ligand) Complexes. Inorganic [U ^{VI} (U = Unidentate Ligand) Complexes. Inorganic Chemistry, 2020, 59, 8946-8959.	4.0	3
90	Mechanistic aspects of the dehydration and dehydrohalogenation of halo-hydroxyformaldoxime conformers. A quantum chemical model study. Journal of Computational Chemistry, 2002, 23, 1266-1280.	3.3	2

#	Article	IF	CITATIONS
91	DFT assessment of the spectroscopic constants and absorption spectra of neutral and charged diatomic species of group 11 and 14 elements. Journal of Computational Chemistry, 2014, 35, 1762-1777.	3.3	2
92	Trans ligand effects on 195Pt NMR shielding constants of square planar Pt(II) complexes. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	2
93	Anomeric and Perlin Effect Ladders for 2-Substituted 2-Fluorotetrahydro-2 <i>H</i> -pyrans Using Sensitive Structural, Energetic, and NMR Probes. Journal of Physical Chemistry A, 2021, 125, 7457-7472.	2.5	2
94	Density Functional Study of the Electronic Structure and Related Properties of Pt(NO)/Pt(NO2) Redox Couples. Collection of Czechoslovak Chemical Communications, 2003, 68, 423-446.	1.0	1
95	Mimicking the electronic structure of endohedral triangular lanthanide clusters in "free―from host carbon cages metallofullerenes uncovers a peculiar reactivity pattern. Journal of Coordination Chemistry, 2014, 67, 2550-2563.	2.2	1
96	The hydrogen storage capacity of coinage metalated benzenes studied by DFT. Journal of Coordination Chemistry, 2015, 68, 2653-2665.	2.2	1
97	¹⁹⁵ Pt NMR parameters as strong descriptors in oneâ€parameter QSAR models for platinumâ€based antitumor compounds. Magnetic Resonance in Chemistry, 2017, 55, 662-669.	1.9	1
98	DFT study of coinage metal-hydrogen associations as hydrogen storage materials stabilized by weakly coordinating anions. International Journal of Hydrogen Energy, 2019, 44, 8341-8346.	7.1	1
99	Probing the electronic structure, magnetotropicity, and absorption spectra of benzene trapped by lanthanide monoxides, C ₆ H ₆ ···LnO, using DFT methods. International Journal of Quantum Chemistry, 2013, 113, 694-708.	2.0	0
100	Exploring possible reaction pathways for the oâ€atom transfer reactions to unsaturated substrates catalyzed by a [Niâ€NO ₂] ↔ [Niâ€NO] redox couple using DFT methods. Journal of Computational Chemistry, 2017, 38, 1780-1788.	3.3	0
101	Investigating the isolation and interconversion of two diastereoisomers in an octahedral system. New Journal of Chemistry, 2019, 43, 17141-17145.	2.8	0