
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2596159/publications.pdf Version: 2024-02-01

SHI-7F YANC

#	Article	IF	CITATIONS
1	PdSe ₂ : Pentagonal Two-Dimensional Layers with High Air Stability for Electronics. Journal of the American Chemical Society, 2017, 139, 14090-14097.	6.6	509
2	Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction. Advanced Materials, 2018, 30, e1706287.	11.1	459
3	Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li–S Batteries. Nano Letters, 2020, 20, 1252-1261.	4.5	394
4	Electrochemical CO ₂ Reduction with Atomic Ironâ€Dispersed on Nitrogenâ€Doped Graphene. Advanced Energy Materials, 2018, 8, 1703487.	10.2	369
5	Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nature Communications, 2019, 10, 2840.	5.8	327
6	Defectâ€Tailoring Mediated Electron–Hole Separation in Singleâ€Unitâ€Cell Bi ₃ O ₄ Br Nanosheets for Boosting Photocatalytic Hydrogen Evolution and Nitrogen Fixation. Advanced Materials, 2019, 31, e1807576.	11.1	311
7	Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nature Nanotechnology, 2018, 13, 294-299.	15.6	269
8	Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Applied Catalysis B: Environmental, 2019, 243, 294-303.	10.8	243
9	Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nature Communications, 2015, 6, 8446.	5.8	241
10	Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy, 2019, 57, 230-240.	8.2	190
11	Hydroxyl-Dependent Evolution of Oxygen Vacancies Enables the Regeneration of BiOCl Photocatalyst. ACS Applied Materials & Interfaces, 2017, 9, 16620-16626.	4.0	176
12	In Situ Coupling Strategy for the Preparation of FeCo Alloys and Co ₄ N Hybrid for Highly Efficient Oxygen Evolution. Advanced Materials, 2017, 29, 1704091.	11.1	165
13	Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking. Nature Communications, 2017, 8, 15020.	5.8	164
14	Rheniumâ€Doped and Stabilized MoS ₂ Atomic Layers with Basalâ€Plane Catalytic Activity. Advanced Materials, 2018, 30, e1803477.	11.1	164
15	Iron Single Atoms on Graphene as Nonprecious Metal Catalysts for Highâ€Temperature Polymer Electrolyte Membrane Fuel Cells. Advanced Science, 2019, 6, 1802066.	5.6	164
16	Supported Single Atoms as New Class of Catalysts for Electrochemical Reduction of Carbon Dioxide. Small Methods, 2019, 3, 1800440.	4.6	155
17	Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts via Entropy Maximization. , 2019, 1, 83-88.		143
18	Roomâ€Temperature Synthesis of 2D Janus Crystals and their Heterostructures. Advanced Materials, 2020, 32, e2006320.	11.1	138

#	Article	IF	CITATIONS
19	Iridium metallene oxide for acidic oxygen evolution catalysis. Nature Communications, 2021, 12, 6007.	5.8	137
20	Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nature Communications, 2021, 12, 6022.	5.8	132
21	Entropyâ€Maximized Synthesis of Multimetallic Nanoparticle Catalysts via a Ultrasonicationâ€Assisted Wet Chemistry Method under Ambient Conditions. Advanced Materials Interfaces, 2019, 6, 1900015.	1.9	130
22	Graphene Oxideâ€Template Controlled Cuboidâ€Shaped Highâ€Capacity VS ₄ Nanoparticles as Anode for Sodiumâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1801806.	7.8	125
23	Deep Understanding of Strong Metal Interface Confinement: A Journey of Pd/FeO _{<i>x</i>} Catalysts. ACS Catalysis, 2020, 10, 8950-8959.	5.5	113
24	Defect engineering in atomically-thin bismuth oxychloride towards photocatalytic oxygen evolution. Journal of Materials Chemistry A, 2017, 5, 14144-14151.	5.2	107
25	Roomâ€Temperature Synthesis of Highâ€Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonicationâ€Based Method. ChemSusChem, 2020, 13, 111-115.	3.6	104
26	Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nature Materials, 2020, 19, 867-873.	13.3	96
27	Cation Exchange Strategy to Single-Atom Noble-Metal Doped CuO Nanowire Arrays with Ultralow Overpotential for H ₂ O Splitting. Nano Letters, 2020, 20, 5482-5489.	4.5	93
28	High efficiency electrochemical reduction of CO ₂ beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO ₂ nanoparticles. Journal of Materials Chemistry A, 2018, 6, 10313-10319.	5.2	92
29	A Universal Seeding Strategy to Synthesize Single Atom Catalysts on 2D Materials for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 1906157.	7.8	91
30	Bipolar Electrochemical Mechanism for Mass Transfer in Nanoionic Resistive Memories. Advanced Materials, 2014, 26, 3649-3654.	11.1	89
31	Photoinduced Strong Metal–Support Interaction for Enhanced Catalysis. Journal of the American Chemical Society, 2021, 143, 8521-8526.	6.6	85
32	Harnessing strong metal–support interactions via a reverse route. Nature Communications, 2020, 11, 3042.	5.8	84
33	Boosting electrosynthesis of ammonia on surface-engineered MXene Ti3C2. Nano Energy, 2020, 72, 104681.	8.2	82
34	Defect-Mediated Phase Transformation in Anisotropic Two-Dimensional PdSe ₂ Crystals for Seamless Electrical Contacts. Journal of the American Chemical Society, 2019, 141, 8928-8936.	6.6	81
35	High-loading single Pt atom sites [Pt-O(OH) <i> _x </i>] catalyze the CO PROX reaction with high activity and selectivity at mild conditions. Science Advances, 2020, 6, eaba3809.	4.7	78
36	Effects of Surface Terminations of 2D Bi ₂ WO ₆ on Photocatalytic Hydrogen Evolution from Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 20067-20074.	4.0	78

#	Article	IF	CITATIONS
37	Singleâ€Atom Inâ€Doped Subnanometer Pt Nanowires for Simultaneous Hydrogen Generation and Biomass Upgrading. Advanced Functional Materials, 2020, 30, 2004310.	7.8	77
38	Revealing the role of oxygen vacancies in bimetallic PbBiO2Br atomic layers for boosting photocatalytic CO2 conversion. Applied Catalysis B: Environmental, 2020, 277, 119170.	10.8	77
39	Coupling hydrothermal and photothermal single-atom catalysis toward excellent water splitting to hydrogen. Applied Catalysis B: Environmental, 2021, 283, 119660.	10.8	77
40	Mechanochemical Nonhydrolytic Sol–Gel-Strategy for the Production of Mesoporous Multimetallic Oxides. Chemistry of Materials, 2019, 31, 5529-5536.	3.2	65
41	In Situ Transmission Electron Microscopy Investigation on Fatigue Behavior of Single ZnO Wires under High-Cycle Strain. Nano Letters, 2014, 14, 480-485.	4.5	62
42	Tailoring Nâ€Terminated Defective Edges of Porous Boron Nitride for Enhanced Aerobic Catalysis. Small, 2017, 13, 1701857.	5.2	60
43	The Piezotronic Effect of Zinc Oxide Nanowires Studied by In Situ TEM. Advanced Materials, 2012, 24, 4676-4682.	11.1	58
44	Enhanced photocatalytic activity induced by sp3 to sp2 transition of carbon dopants in BiOCl crystals. Applied Catalysis B: Environmental, 2018, 221, 467-472.	10.8	58
45	Atomically Dispersed Bimetallic FeNi Catalysts as Highly Efficient Bifunctional Catalysts for Reversible Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem, 2019, 6, 3478-3487.	1.7	58
46	Stabilizing and Activating Metastable Nickel Nanocrystals for Highly Efficient Hydrogen Evolution Electrocatalysis. ACS Nano, 2018, 12, 11625-11631.	7.3	55
47	Surface Reorganization Leads to Enhanced Photocatalytic Activity in Defective BiOCl. Chemistry of Materials, 2018, 30, 5128-5136.	3.2	55
48	Facile Synthesis of Highly Porous Metal Oxides by Mechanochemical Nanocasting. Chemistry of Materials, 2018, 30, 2924-2929.	3.2	54
49	On-Demand, Ultraselective Hydrogenation System Enabled by Precisely Modulated Pd–Cd Nanocubes. Journal of the American Chemical Society, 2020, 142, 962-972.	6.6	53
50	Ambipolar ferromagnetism by electrostatic doping of a manganite. Nature Communications, 2018, 9, 1897.	5.8	51
51	Atomically dispersed cobalt on graphitic carbon nitride as a robust catalyst for selective oxidation of ethylbenzene by peroxymonosulfate. Journal of Materials Chemistry A, 2021, 9, 3029-3035.	5.2	48
52	Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts. Angewandte Chemie - International Edition, 2017, 56, 9820-9824.	7.2	47
53	Cobalt Single Atoms Embedded in Nitrogenâ€Doped Graphene for Selective Oxidation of Benzyl Alcohol by Activated Peroxymonosulfate. Small, 2021, 17, e2004579.	5.2	47
54	Incorporating Rich Mesoporosity into a Ceria-Based Catalyst via Mechanochemistry. Chemistry of Materials, 2017, 29, 7323-7329.	3.2	45

#	Article	IF	CITATIONS
55	Protecting the Nanoscale Properties of Ag Nanowires with a Solution-Grown SnO ₂ Monolayer as Corrosion Inhibitor. Journal of the American Chemical Society, 2019, 141, 13977-13986.	6.6	45
56	Sinter-Resistant Nanoparticle Catalysts Achieved by 2D Boron Nitride-Based Strong Metal–Support Interactions: A New Twist on an Old Story. ACS Central Science, 2020, 6, 1617-1627.	5.3	42
57	Three-Dimensional Patterning of Nanoparticles by Molecular Stamping. ACS Nano, 2020, 14, 6823-6833.	7.3	42
58	Toward the Design of a Hierarchical Perovskite Support: Ultra-Sintering-Resistant Gold Nanocatalysts for CO Oxidation. ACS Catalysis, 2017, 7, 3388-3393.	5.5	40
59	Direct growth of MoS ₂ single crystals on polyimide substrates. 2D Materials, 2017, 4, 021028.	2.0	39
60	Exsolution–Dissolution of Supported Metals on High-Entropy Co ₃ MnNiCuZnO <i>_x</i> : Toward Sintering-Resistant Catalysis. ACS Catalysis, 2021, 11, 12247-12257.	5.5	39
61	Reaching the Excitonic Limit in 2D Janus Monolayers by In Situ Deterministic Growth. Advanced Materials, 2022, 34, e2106222.	11.1	39
62	Valence-programmable nanoparticle architectures. Nature Communications, 2020, 11, 2279.	5.8	37
63	Atomic defects in ultra-thin mesoporous TiO2 enhance photocatalytic hydrogen evolution from water splitting. Applied Surface Science, 2020, 513, 145723.	3.1	37
64	New Insights into the Reaction Mechanism of Sodium Vanadate for an Aqueous Zn Ion Battery. Chemistry of Materials, 2020, 32, 2053-2060.	3.2	37
65	Concurrent Synthesis of Highâ€Performance Monolayer Transition Metal Disulfides. Advanced Functional Materials, 2017, 27, 1605896.	7.8	35
66	A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells. Nano Energy, 2021, 80, 105534.	8.2	35
67	Recombination in SnO ₂ -Based Quantum Dots Sensitized Solar Cells: The Role of Surface States. Journal of Physical Chemistry C, 2013, 117, 10965-10973.	1.5	34
68	High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO ₄ Anode. ACS Applied Materials & Interfaces, 2018, 10, 7061-7068.	4.0	34
69	Self-regenerative noble metal catalysts supported on high-entropy oxides. Chemical Communications, 2020, 56, 15056-15059.	2.2	34
70	Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges. Materials Today, 2022, 53, 217-237.	8.3	34
71	Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to <i>in situ</i> XAFS characterization. Nanoscale, 2019, 11, 20301-20306.	2.8	33
72	Entropy-driven chemistry reveals highly stable denary MgAl2O4-type catalysts. Chem Catalysis, 2021, 1, 648-662.	2.9	31

#	Article	IF	CITATIONS
73	Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM. Nano Research, 2014, 7, 1065-1072.	5.8	30
74	A Principle for Highly Active Metal Oxide Catalysts via NaCl-Based Solid Solution. CheM, 2020, 6, 1723-1741.	5.8	30
75	<scp>Entropyâ€stabilized metal eO_{<i>x</i>}</scp> solid solutions for catalytic combustion of volatile organic compounds. AICHE Journal, 2021, 67, .	1.8	30
76	Atomically Dispersed Pd Supported on Zinc Oxide for Selective Nonoxidative Ethanol Dehydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 2648-2656.	1.8	29
77	Solvent-free synthesis of mesoporous platinum-aluminum oxide via mechanochemistry: Toward selective hydrogenation of nitrobenzene to aniline. Chemical Engineering Science, 2020, 220, 115619.	1.9	29
78	High-performance electrolytic oxygen evolution with a seamless armor core–shell FeCoNi oxynitride. Nanoscale, 2019, 11, 7239-7246.	2.8	28
79	First demonstration of phosphate enhanced atomically dispersed bimetallic FeCu catalysts as Pt-free cathodes for high temperature phosphoric acid doped polybenzimidazole fuel cells. Applied Catalysis B: Environmental, 2021, 284, 119717.	10.8	28
80	Perovskite Oxide–Halide Solid Solutions: A Platform for Electrocatalysts. Angewandte Chemie - International Edition, 2021, 60, 9953-9958.	7.2	26
81	Sublayer-enhanced atomic sites of single atom catalysts through <i>in situ</i> atomization of metal oxide nanoparticles. Energy and Environmental Science, 2022, 15, 1183-1191.	15.6	25
82	Layered oxides-LiNi1/3Co1/3Mn1/3O2 as anode electrode for symmetric rechargeable lithium-ion batteries. Journal of Power Sources, 2018, 378, 516-521.	4.0	24
83	Real-time in situ TEM studying the fading mechanism of tin dioxide nanowire electrodes in lithium ion batteries. Science China Technological Sciences, 2013, 56, 2630-2635.	2.0	23
84	Enhancing the photoresponse and photocatalytic properties of TiO2 by controllably tuning defects across {101} facets. Applied Surface Science, 2018, 434, 711-716.	3.1	23
85	Sustainable synthesis of alkaline metal oxide-mesoporous carbons <i>via</i> mechanochemical coordination self-assembly. Journal of Materials Chemistry A, 2017, 5, 23446-23452.	5.2	22
86	Simultaneously Boosting the Ionic Conductivity and Mechanical Strength of Polymer Gel Electrolyte Membranes by Confining Ionic Liquids into Hollow Silica Nanocavities. Batteries and Supercaps, 2019, 2, 985-991.	2.4	21
87	Direct Cation Exchange in Monolayer <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mn>2via Recombination-Enhanced Migration. Physical Review Letters, 2019, 122, 106101.</mml:mn></mml:msub></mml:mrow></mml:math>	າm l_{ຂາງາ > <!--</b-->}	mn 2lı msub><
88	Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts. Angewandte Chemie, 2017, 129, 9952-9956.	1.6	19
89	One-Pot Pyrolysis Method to Fabricate Carbon Nanotube Supported Ni Single-Atom Catalysts with Ultrahigh Loading. ACS Applied Energy Materials, 0, , .	2.5	19
90	In Situ Visualization of Structural Evolution and Fissure Breathing in (De)lithiated H ₂ V ₃ O ₈ Nanorods. ACS Energy Letters, 2019, 4, 2081-2090.	8.8	19

#	Article	IF	CITATIONS
91	Exotic Reaction Front Migration and Stage Structure in Lithiated Silicon Nanowires. ACS Nano, 2014, 8, 8249-8254.	7.3	18
92	Ultra‣table and Highâ€Cobalt‣oaded Cobalt@Ordered Mesoporous Carbon Catalysts: Allâ€inâ€One Deoxygenation of Ketone into Alkylbenzene. ChemCatChem, 2018, 10, 3299-3304.	1.8	17
93	Atomic-level tunnel engineering of todorokite MnO2 for precise evaluation of lithium storage mechanisms by in situ transmission electron microscopy. Nano Energy, 2019, 63, 103840.	8.2	17
94	Sulphur as medium: Directly converting pitch into porous carbon. Fuel, 2021, 286, 119393.	3.4	17
95	Reversibly tuning the surface state of Ag via the assistance of photocatalysis in Ag/BiOCl. Nanotechnology, 2019, 30, 305601.	1.3	16
96	Evolution of Oxyhalide Crystals under Electron Beam Irradiation: An in Situ Method To Understand the Origin of Structural Instability. Inorganic Chemistry, 2018, 57, 8988-8993.	1.9	15
97	Mechanochemical redox-based synthesis of highly porous Co Mn1-O catalysts for total oxidation. Chinese Journal of Catalysis, 2020, 41, 1846-1854.	6.9	15
98	Monoâ€Atomic Fe Centers in Nitrogen/Carbon Monolayers for Liquidâ€Phase Selective Oxidation Reaction. ChemCatChem, 2018, 10, 3539-3545.	1.8	14
99	Controlled Oneâ€pot Synthesis of Nickel Single Atoms Embedded in Carbon Nanotube and Graphene Supports with High Loading. ChemNanoMat, 2020, 6, 1063-1074.	1.5	14
100	Spontaneous amorphous oxide-interfaced ultrafine noble metal nanoclusters for unexpected anodic electrocatalysis. Chem Catalysis, 2021, 1, 1104-1117.	2.9	14
101	Promoting Pt catalysis for CO oxidation <i>via</i> the Mott–Schottky effect. Nanoscale, 2019, 11, 18568-18574.	2.8	13
102	Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids. Nano Research, 2022, 15, 4792-4798.	5.8	13
103	Recent development of studies on the mechanism of resistive memories in several metal oxides. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2361-2369.	2.0	12
104	<i>In-situ</i> optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence. Applied Physics Letters, 2014, 105, .	1.5	12
105	The effects of vanadium substitution on one-dimensional tunnel structures of cryptomelane: Combined TEM and DFT study. Nano Energy, 2020, 71, 104571.	8.2	11
106	Designed Iron Single Atom Catalysts for Highly Efficient Oxygen Reduction Reaction in Alkaline and Acid Media. Advanced Materials Interfaces, 2021, 8, 2001788.	1.9	11
107	Detection of defects in atomic-resolution images of materials using cycle analysis. Advanced Structural and Chemical Imaging, 2020, 6, .	4.0	11
108	Synthesis of MCF-supported AuCo nanoparticle catalysts and the catalytic performance for the CO oxidation reaction. RSC Advances, 2015, 5, 100212-100222.	1.7	10

#	Article	IF	CITATIONS
109	Strong Effect of B-Site Substitution on the Reactivity of Layered Perovskite Oxides Probed via Isopropanol Conversion. , 2019, 1, 230-236.		10
110	Mechanochemical Synthesis of Ruthenium Cluster@Ordered Mesoporous Carbon Catalysts by Synergetic Dual Templates. Chemistry - A European Journal, 2019, 25, 8494-8498.	1.7	10
111	<scp>Lowâ€ŧemperature</scp> total oxidation of methane by pore―and vacancyâ€engineered <scp>NiO</scp> catalysts. AICHE Journal, 2022, 68, .	1.8	10
112	Dynamic nanomechanics of zinc oxide nanowires. Applied Physics Letters, 2012, 100, 163110.	1.5	9
113	In-situ TEM imaging of the anisotropic etching of graphene by metal nanoparticles. Nanotechnology, 2014, 25, 465709.	1.3	9
114	Solvent-free and rapid synthesis of mesoporous Pt–iron oxide catalysts <i>via</i> mechanochemical assembly. Catalysis Science and Technology, 2019, 9, 3907-3913.	2.1	9
115	Singleâ€Atom Catalysts: Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction (Adv. Mater. 13/2018). Advanced Materials, 2018, 30, 1870088.	11.1	8
116	Facile benzene reduction promoted by a synergistically coupled Cu–Co–Ce ternary mixed oxide. Chemical Science, 2020, 11, 5766-5771.	3.7	8
117	Investigating phase transitions from local crystallographic analysis based on statistical learning of atomic environments in 2D MoS2-ReS2. Applied Physics Reviews, 2021, 8, 011409.	5.5	7
118	Stable and Catalytically Active Shape-Engineered Cerium Oxide Nanorods by Controlled Doping of Aluminum Cations. ACS Applied Materials & Interfaces, 2020, 12, 37774-37783.	4.0	6
119	Coordination-supported organic polymers: mesoporous inorganic–organic materials with preferred stability. Inorganic Chemistry Frontiers, 2018, 5, 2018-2022.	3.0	5
120	Optically manipulated nanomechanics of semiconductor nanowires. Chinese Physics B, 2019, 28, 054204.	0.7	5
121	Vanadium-Substituted Tunnel Structured Silver Hollandite (Ag _{1.2} V _{<i>x</i>} Mn _{8–<i>x</i>} O ₁₆): Impact on Morphology and Electrochemistry. Inorganic Chemistry, 2020, 59, 3783-3793.	1.9	4
122	Mechanochemical Redox: Calcinationâ€free Synthesis of Ceriaâ€hybrid Catalyst with Ultraâ€High Surface Area. ChemCatChem, 2021, 13, 2434-2443.	1.8	4
123	Tensile behavior and inelastic strain recovery of Cu-Co nanolaminates. Scripta Materialia, 2021, 197, 113781.	2.6	4
124	Homogeneous superconducting gap in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Dy</mml:mi><mml:msub><mml: mathvariant="normal">O<mml:mrow><mml:mn>7</mml:mn><mml:mo>â^'</mml:mo><mml:mi>Î'synthesized by oxide molecular beam epitaxy. Physical Review Materials, 2020, 4, .</mml:mi></mml:mrow></mml: </mml:msub></mml:mrow></mml:math 	mi>Banml:mi> </td <td>ml:mi> < mml:n mml:mrow> <!--</td--></td>	ml:mi> < mml:n mml:mrow> </td
125	Carbon allotropes form a hybrid material: Synthesis, characterization, and molecular dynamics simulation of novel graphene-glassy carbon hybrid material. Carbon, 2022, 196, 1012-1023.	5.4	4

126Observation of intermediate template directed SiC nanowire growth in Siâ€"Câ€"N systems.1.33Nanotechnology, 2012, 23, 415704.

#	Article	IF	CITATIONS
127	Realizing Selective and Aerobic Oxidation by Porous Transition-Metal-Salt@Ceria Catalyst. ChemistrySelect, 2016, 1, 1179-1183.	0.7	3
128	Coordination‣upported Imidazolate Networks: Water―and Heat‣table Mesoporous Polymers for Catalysis. Chemistry - A European Journal, 2017, 23, 10038-10042.	1.7	3
129	Roomâ€Temperature Activation of Molecular Oxygen Over a Metalâ€Free Triazineâ€Decorated sp ² â€Carbon Framework for Green Synthesis. ChemCatChem, 2018, 10, 5331-5335.	1.8	3
130	Statistical Physics-based Framework and Bayesian Inference for Model Selection and Uncertainty Quantification. Microscopy and Microanalysis, 2019, 25, 130-131.	0.2	3
131	Perovskite Oxide–Halide Solid Solutions: A Platform for Electrocatalysts. Angewandte Chemie, 2021, 133, 10041-10046.	1.6	3
132	Local and Bulk Probe of Vanadium-Substituted α-Manganese Oxide (α-K <i>_x</i> V <i>_y</i> Mn _{8–<i>y</i>} O ₁₆) Lithium Electrochemistry. Inorganic Chemistry, 2021, 60, 10398-10414.	1.9	3
133	In Situ TEM: Theory and Applications. Springer Tracts in Modern Physics, 2018, , 381-477.	0.1	1
134	Determining the 3D Atomic Coordinates and Crystal Defects in 2D Materials with Picometer Precision. Microscopy and Microanalysis, 2019, 25, 404-405.	0.2	1
135	Mechanochemical redox: a calcination-free process to support CoMnO _x catalysts. Catalysis Science and Technology, 2020, 10, 6525-6532.	2.1	1
136	Atomic Electron Tomography: Past, Present and Future. Microscopy and Microanalysis, 2020, 26, 652-654.	0.2	1
137	Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging. Npj Computational Materials, 2021, 7, .	3.5	1
138	Supper lattice structure transformation based on nonstoichiometric bismuth oxychloride. Microscopy and Microanalysis, 2017, 23, 1676-1677.	0.2	0
139	Exchange of Re and Mo atoms in MoS2 driven by Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1702-1703.	0.2	0
140	Electronic Structure and Coupling of Re Clusters In Monolayer MoS2. Microscopy and Microanalysis, 2019, 25, 506-507.	0.2	0
141	Scanning Transmission Electron Microscopy (STEM) Study on Novel Two-dimensional Materials. Microscopy and Microanalysis, 2020, 26, 2372-2374.	0.2	0
142	The Effects of Vanadium Substitution on One-dimensional Tunnel Structures of Cryptomelane: Combined TEM and DFT Study. Microscopy and Microanalysis, 2020, 26, 3162-3164.	0.2	0
143	Reaching the Excitonic Limit in 2D Janus Monolayers by In Situ Deterministic Growth (Adv. Mater.) Tj ETQq1 1 C).784314 rg	gBT_/Overloc
144	Observation of Cobalt Species Evolution in Mesoporous Carbon by Inâ€Situ STEMâ€HAADF Imaging and Related Hydrogenation Process. ChemistrySelect, 2022, 7, .	0.7	0