
James R Davie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2596000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential expression of <scp><i>HNF1A</i></scp> and <scp><i>HNF1Aâ€AS1</i></scp> in colon cancer cells. IUBMB Life, 2022, 74, 496-507.	3.4	1
2	The key role of differential broad H3K4me3 and H3K4ac domains in breast cancer. Gene, 2022, 826, 146463.	2.2	9
3	The chicken model organism for epigenomic research. Genome, 2021, 64, 476-489.	2.0	17
4	The treatment of SARS-CoV2 with antivirals and mitigation of the cytokine storm syndrome: the role of gene expression. Genome, 2021, 64, 400-415.	2.0	0
5	Epigenetic regulation of ACE2, the receptor of the SARS-CoV-2 virus ¹ . Genome, 2021, 64, 386-399.	2.0	58
6	Transcriptionally Active Chromatin—Lessons Learned from the Chicken Erythrocyte Chromatin Fractionation. Cells, 2021, 10, 1354.	4.1	6
7	The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Clinical Epigenetics, 2021, 13, 138.	4.1	84
8	Mitogen-induced transcriptional programming in human fibroblasts. Gene, 2021, 800, 145842.	2.2	4
9	Chronic Ethanol Exposure Alters DNA Methylation in Neural Stem Cells: Role of Mouse Strain and Sex. Molecular Neurobiology, 2020, 57, 650-667.	4.0	28
10	Atypical chromatin structure of immune-related genes expressed in chicken erythrocytes. Biochemistry and Cell Biology, 2020, 98, 171-177.	2.0	10
11	<scp>SARSâ€CoV</scp> â€2 multifaceted interaction with the human host. Part <scp>II</scp> : Innate immunity response, immunopathology, and epigenetics. IUBMB Life, 2020, 72, 2331-2354.	3.4	29
12	<scp>SARSâ€CoV</scp> â€2 multifaceted interaction with human host. Part I: What we have learnt and done so far, and the still unknown realities. IUBMB Life, 2020, 72, 2313-2330.	3.4	10
13	Genomic landscape of transcriptionally active histone arginine methylation marks, H3R2me2s and H4R3me2a, relative to nucleosome depleted regions. Gene, 2020, 742, 144593.	2.2	24
14	DNA methylation and chromatin modifications. , 2019, , 13-36.		4
15	Genome-Wide Transcriptome Landscape of Embryonic Brain-Derived Neural Stem Cells Exposed to Alcohol with Strain-Specific Cross-Examination in BL6 and CD1 Mice. Scientific Reports, 2019, 9, 206.	3.3	25
16	Global DNA Methylation and Histone Posttranslational Modifications in Human and Nonhuman Primate Brain in Association with Prenatal Alcohol Exposure. Alcoholism: Clinical and Experimental Research, 2019, 43, 1145-1162.	2.4	23
17	DNA Methylation Contributes to the Differential Expression Levels of Mecp2 in Male Mice Neurons and Astrocytes. International Journal of Molecular Sciences, 2019, 20, 1845.	4.1	30
18	Chromatin organization of transcribed genes in chicken polychromatic erythrocytes. Gene, 2019, 699, 80-87.	2.2	8

#	Article	IF	CITATIONS
19	<i>Biochemistry and Cell Biology</i> celebrates its 90th anniversary. Biochemistry and Cell Biology, 2019, 97, iii-iii.	2.0	0
20	Mitogen and stress- activated protein kinase regulated gene expression in cancer cells. Advances in Biological Regulation, 2019, 71, 147-155.	2.3	16
21	DNA methylation and histone post-translational modification stability in post-mortem brain tissue. Clinical Epigenetics, 2019, 11, 5.	4.1	25
22	Transcriptionâ€dependent association of HDAC2 with active chromatin. Journal of Cellular Physiology, 2018, 233, 1650-1657.	4.1	16
23	Mitogen-induced distinct epialleles are phosphorylated at either H3S10 or H3S28, depending on H3K27 acetylation. Molecular Biology of the Cell, 2017, 28, 817-824.	2.1	12
24	A 16 Yin Yang gene expression ratio signature for ER+/nodeâ^' breast cancer. International Journal of Cancer, 2017, 140, 1413-1424.	5.1	7
25	The discovery and development of the CRISPR system in applications in genome manipulation. Biochemistry and Cell Biology, 2017, 95, 203-210.	2.0	10
26	Ubiquitin C-terminal hydrolase isozyme L1 is associated with shelterin complex at interstitial telomeric sites. Epigenetics and Chromatin, 2017, 10, 54.	3.9	6
27	Dynamic Histone Acetylation of H3K4me3 Nucleosome Regulates <i>MCL1</i> Preâ€mRNA Splicing. Journal of Cellular Physiology, 2016, 231, 2196-2204.	4.1	13
28	A 10-Gene Yin Yang Expression Ratio Signature for Stage IA and IB Non–Small Cell Lung Cancer. Journal of Thoracic Oncology, 2016, 11, 2150-2160.	1.1	14
29	Epigenetics: Chromatin Organization and Function. Cardiac and Vascular Biology, 2016, , 1-35.	0.2	0
30	The chicken erythrocyte epigenome. Epigenetics and Chromatin, 2016, 9, 19.	3.9	23
31	Histone H3K4 trimethylation: dynamic interplay with pre-mRNA splicing. Biochemistry and Cell Biology, 2016, 94, 1-11.	2.0	37
32	Connecting the dots: chromatin and alternative splicing in EMT. Biochemistry and Cell Biology, 2016, 94, 12-25.	2.0	28
33	High Mobility Group A2 protects cancer cells against telomere dysfunction. Oncotarget, 2016, 7, 12761-12782.	1.8	16
34	PDK2-mediated alternative splicing switches Bnip3 from cell death to cell survival. Journal of Cell Biology, 2015, 210, 1101-1115.	5.2	31
35	The steroid receptor RNA activator protein (SRAP) controls cancer cell migration/motility. FEBS Letters, 2015, 589, 4010-4018.	2.8	12
36	Protein arginine methyltransferases (PRMTs): Role in chromatin organization. Advances in Biological Regulation, 2015, 57, 173-184.	2.3	67

#	Article	IF	CITATIONS
37	RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing. Nucleic Acids Research, 2014, 42, 1656-1670.	14.5	46
38	Dual cross-linking ribonucleoprotein immunoprecipitation assay. Biochemistry and Cell Biology, 2014, 92, 317-319.	2.0	2
39	DNA Modifications: Function and Applications in Normal and Disease States. Biology, 2014, 3, 670-723.	2.8	129
40	Dynamic distribution of HDAC1 and HDAC2 during mitosis: Association with Fâ€actin. Journal of Cellular Physiology, 2013, 228, 1525-1535.	4.1	19
41	Regulation of chromatin structure via histone post-translational modification and the link to carcinogenesis. Cancer and Metastasis Reviews, 2013, 32, 363-376.	5.9	50
42	Targeting class I histone deacetylases in cancer therapy. Expert Opinion on Therapeutic Targets, 2013, 17, 29-41.	3.4	62
43	Immediate early response genes and cell transformation. , 2013, 137, 64-77.		101
44	HDAC inhibitors prevent the induction of the immediateâ€early gene <i>FOSL1</i> , but do not alter the nucleosome response. FEBS Letters, 2013, 587, 1510-1517.	2.8	9
45	Epigenetic regulation of canonical TNFα pathway by HDAC1 determines survival of cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1662-H1669.	3.2	12
46	Protein Kinase CK2 Regulates the Dimerization of Histone Deacetylase 1 (HDAC1) and HDAC2 during Mitosis. Journal of Biological Chemistry, 2013, 288, 16518-16528.	3.4	48
47	Yin Yang Gene Expression Ratio Signature for Lung Cancer Prognosis. PLoS ONE, 2013, 8, e68742.	2.5	12
48	Mitogen- and Stress-Activated Protein Kinases 1 and 2 Are Required for Maximal Trefoil Factor 1 Induction. PLoS ONE, 2013, 8, e63189.	2.5	12
49	Pre-mRNA splicing: Role of epigenetics and implications in disease. Advances in Biological Regulation, 2012, 52, 377-388.	2.3	36
50	Histone H3 phosphorylation, immediate-early gene expression, and the nucleosomal response: a historical perspective ¹ This article is part of Special Issue entitled Asilomar Chromatin and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2012, 90, 39-54.	2.0	51
51	Mitogen- and Stress-Activated Kinase 1 (MSK1) Regulates Cigarette Smoke-Induced Histone Modifications on NF-κB-dependent Genes. PLoS ONE, 2012, 7, e31378.	2.5	51
52	Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clinical Epigenetics, 2012, 4, 5.	4.1	388
53	Activation and function of immediate-early genes in the nervous systemThis paper is one of a selection of papers in a Special Issue entitled 31st Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology. 2011. 89. 61-73.	2.0	122
54	Role of MSK1 in the Malignant Phenotype of Ras-transformed Mouse Fibroblasts. Journal of Biological Chemistry, 2011, 286, 42-49.	3.4	30

James R Davie

#	Article	IF	CITATIONS
55	Gene expression regulation through 14-3-3 interactions with histones and HDACs. Discovery Medicine, 2011, 11, 349-58.	0.5	18
56	The role of Sp1 and Sp3 in normal and cancer cell biology. Annals of Anatomy, 2010, 192, 275-283.	1.9	279
57	Nucleosomal response, immediate-early gene expression and cell transformation. Advances in Enzyme Regulation, 2010, 50, 135-145.	2.6	9
58	Estrogen regulated expression of the p21 ^{Waf1/Cip1} gene in estrogen receptor positive human breast cancer cells. Journal of Cellular Physiology, 2010, 224, 28-32.	4.1	46
59	Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Research, 2010, 38, 3196-3208.	14.5	130
60	Selective Association of Peroxiredoxin 1 with Genomic DNA and <i>COX-2</i> Upstream Promoter Elements in Estrogen Receptor Negative Breast Cancer Cells. Molecular Biology of the Cell, 2010, 21, 2987-2995.	2.1	36
61	Genomic instability and histone H3 phosphorylation induction by the Rasâ€mitogen activated protein kinase pathway in pancreatic cancer cells. International Journal of Cancer, 2009, 124, 562-567.	5.1	14
62	Epigenetic control. Journal of Cellular Physiology, 2009, 219, 243-250.	4.1	319
63	Increased genomic instability and altered chromosomal protein phosphorylation timing in <i>HRAS</i> â€transformed mouse fibroblasts. Genes Chromosomes and Cancer, 2009, 48, 397-409.	2.8	15
64	H3 phosphorylation: dual role in mitosis and interphaseThis paper is one of a selection of papers published in this Special Issue entitled 30th Annual International Asilomar Chromatin and Chromosomes Conference and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2009, 87, 695-709.	2.0	105
65	Biotin is not a natural histone modification. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 719-733.	1.9	34
66	Chromatin organization and nuclear microenvironments in cancer cells. Journal of Cellular Biochemistry, 2008, 104, 2004-2015.	2.6	51
67	Mitotic partitioning of transcription factors. Journal of Cellular Biochemistry, 2008, 105, 1-8.	2.6	44
68	Association of Sp3 and estrogen receptor α with the transcriptionally active trefoil factor 1 promoter in MCFâ€7 breast cancer cells. Journal of Cellular Biochemistry, 2008, 105, 365-369.	2.6	10
69	Nuclear microenvironments and cancer. Journal of Cellular Biochemistry, 2008, 104, 1949-1952.	2.6	9
70	Nuclear organization and chromatin dynamics – Sp1, Sp3 and histone deacetylases. Advances in Enzyme Regulation, 2008, 48, 189-208.	2.6	72
71	Effects of the <i>In Vivo</i> Supply of Butyrate on Histone Acetylation of Cecum in Piglets. Journal of Parenteral and Enteral Nutrition, 2008, 32, 51-56.	2.6	21
72	Differential Distribution of Unmodified and Phosphorylated Histone Deacetylase 2 in Chromatin. Journal of Biological Chemistry, 2007, 282, 33227-33236.	3.4	53

#	Article	IF	CITATIONS
73	Phosphorylated serine 28 of histone H3 is associated with destabilized nucleosomes in transcribed chromatin. Nucleic Acids Research, 2007, 35, 6640-6647.	14.5	36
74	Suppression of DPYD expression in RKO Cells via DNA methylation in the regulatory region of the DPYD promoter: a potentially important epigenetic mechanism regulating DPYD expression. Biochemistry and Cell Biology, 2007, 85, 337-346.	2.0	19
75	Competitive inhibition of histone deacetylase activity by trichostatin A and butyrate. Biochemistry and Cell Biology, 2007, 85, 751-758.	2.0	97
76	An integrated analysis of genes and pathways exhibiting metabolic differences between estrogen receptor positive breast cancer cells. BMC Cancer, 2007, 7, 181.	2.6	14
77	Estrogen receptor-β regulates psoriasin (S100A7) in human breast cancer. Breast Cancer Research and Treatment, 2007, 104, 75-85.	2.5	34
78	Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions. Science, 2006, 311, 844-847.	12.6	1,881
79	Potential role of estrogen receptor α (ERα) phosphorylated at Serine118 in human breast cancer in vivo. Journal of Steroid Biochemistry and Molecular Biology, 2006, 102, 139-146.	2.5	39
80	The role of Sp1 and Sp3 in the constitutive DPYD gene expression. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2006, 1759, 247-256.	2.4	28
81	Sp1 and Sp3 foci distribution throughout mitosis. Journal of Cell Science, 2006, 119, 1063-1070.	2.0	39
82	Chromatin Modification of the Trefoil Factor 1 Gene in Human Breast Cancer Cells by the Ras/Mitogen-Activated Protein Kinase Pathway. Cancer Research, 2006, 66, 4610-4616.	0.9	45
83	Estrogen Receptor-α Phosphorylated at Ser118 Is Present at the Promoters of Estrogen-Regulated Genes and Is Not Altered Due to HER-2 Overexpression. Cancer Research, 2006, 66, 10162-10170.	0.9	73
84	Transcriptional Silencing of the Death Gene BNIP3 by Cooperative Action of NF-κB and Histone Deacetylase 1 in Ventricular Myocytes. Circulation Research, 2006, 99, 1347-1354.	4.5	67
85	Phosphorylation of Histones by Tissue Transglutaminase. Journal of Biological Chemistry, 2006, 281, 5532-5538.	3.4	82
86	Abnormalities of chromatin in tumor cells. , 2006, , 25-47.		16
87	Stimulation of the Ras-MAPK pathway leads to independent phosphorylation of histone H3 on serine 10 and 28. Oncogene, 2005, 24, 3492-3502.	5.9	69
88	Histone modifications as a platform for cancer therapy. Journal of Cellular Biochemistry, 2005, 94, 1088-1102.	2.6	59
89	Inducible upregulation of oestrogen receptor-β1 affects oestrogen and tamoxifen responsiveness in MCF7 human breast cancer cells. Journal of Molecular Endocrinology, 2005, 34, 553-566.	2.5	64
90	Differential Intranuclear Organization of Transcription Factors Sp1 and Sp3. Molecular Biology of the Cell, 2005, 16, 4073-4083.	2.1	57

#	Article	IF	CITATIONS
91	Estrogen regulation of trefoil factor 1 expression by estrogen receptor α and Sp proteins. Experimental Cell Research, 2005, 302, 96-107.	2.6	51
92	The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochemistry and Cell Biology, 2005, 83, 1-14.	2.0	201
93	Mitogen- and Stress-Activated Protein Kinase 1 Activity and Histone H3 Phosphorylation in Oncogene-Transformed Mouse Fibroblasts. Cancer Research, 2004, 64, 9076-9079.	0.9	34
94	Identification of a direct Dlx homeodomain target in the developing mouse forebrain and retina by optimization of chromatin immunoprecipitation. Nucleic Acids Research, 2004, 32, 884-892.	14.5	50
95	Gene regulation by Sp1 and Sp3. Biochemistry and Cell Biology, 2004, 82, 460-471.	2.0	366
96	Elevated expression of the estrogen receptor prevents the down-regulation of p21Waf1/Cip1 in hormone dependent breast cancer cells. Journal of Cellular Biochemistry, 2004, 93, 619-628.	2.6	3
97	Histone modifications. New Comprehensive Biochemistry, 2004, , 205-240.	0.1	5
98	MSK1 and MSK2 Mediate Mitogen- and Stress-Induced Phosphorylation of Histone H3: A Controversy Resolved. Science Signaling, 2003, 2003, pe33-pe33.	3.6	56
99	CHD1 associates with NCoR and histone deacetylase as well as with RNA splicing proteins. Biochemical and Biophysical Research Communications, 2003, 308, 170-176.	2.1	51
100	The insulator binding protein CTCF associates with the nuclear matrix. Experimental Cell Research, 2003, 288, 218-223.	2.6	81
101	Measurement of histone acetyltransferase and histone deacetylase activities and kinetics of histone acetylation. Methods, 2003, 31, 12-23.	3.8	39
102	Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods, 2003, 31, 67-75.	3.8	155
103	The many roles of the transcriptional regulator CTCF. Biochemistry and Cell Biology, 2003, 81, 161-167.	2.0	61
104	Inhibition of Histone Deacetylase Activity by Butyrate. Journal of Nutrition, 2003, 133, 2485S-2493S.	2.9	1,084
105	The Transcriptional Repressor Sp3 Is Associated with CK2-phosphorylated Histone Deacetylase 2. Journal of Biological Chemistry, 2002, 277, 35783-35786.	3.4	80
106	Isolation of Proteins Cross-linked to DNA by Formaldehyde. , 2002, , 753-758.		6
107	Protein Blotting of Basic Proteins Resolved on Acid-Urea-Triton-Polyacrylamide Gels. , 2002, , 337-342.		0

#	Article	IF	CITATIONS
109	NAPP2, a Peroxisomal Membrane Protein, Is Also a Transcriptional Corepressor. Genomics, 2002, 79, 423-431.	2.9	14
110	The estrogen receptor: more than the average transcription factor. Biochemistry and Cell Biology, 2002, 80, 335-341.	2.0	49
111	Characterization of stably transfected fusion protein GFP-estrogen receptor-? in MCF-7 human breast cancer cells. Journal of Cellular Biochemistry, 2002, 86, 365-375.	2.6	16
112	Isolation of transcriptionally active chromatin from human breast cancer cells using Sulfolink coupling gel chromatography. Journal of Cellular Biochemistry, 2002, 84, 439-446.	2.6	3
113	Histone H1S-3 phosphorylation in Ha-ras oncogene-transformed mouse fibroblasts. Oncogene, 2002, 21, 8397-8403.	5.9	33
114	Ser-10 phosphorylation of histone H3 and immediate early gene expression in oncogene-transformed mouse fibroblasts. Cancer Research, 2002, 62, 75-8.	0.9	94
115	Regulation of Neuronal Traits by a Novel Transcriptional Complex. Neuron, 2001, 31, 353-365.	8.1	400
116	CUG-initiated FGF-2 induces chromatin compaction in cultured cardiac myocytes and in vitro. Journal of Cellular Physiology, 2001, 186, 457-467.	4.1	22
117	Effect of Estradiol on Histone Acetylation Dynamics in Human Breast Cancer Cells. Journal of Biological Chemistry, 2001, 276, 49435-49442.	3.4	57
118	An Essential Role for Mad Homology Domain 1 in the Association of Smad3 with Histone Deacetylase Activity*. Journal of Biological Chemistry, 2001, 276, 22595-22603.	3.4	34
119	Dynamically Acetylated Histone Association with Transcriptionally Active and Competent Genes in the Avian Adult β-Globin Gene Domain. Journal of Biological Chemistry, 2001, 276, 34810-34815.	3.4	31
120	Expression of E1 Component of Human Branched-Chain α-Keto Acid Dehydrogenase Complex in Escherichia coli by Cotransformation with Chaperonins GroEL GroES. Methods in Enzymology, 2000, 324, 179-191.	1.0	12
121	Signal transduction pathways and chromatin structure in cancer cells. Journal of Cellular Biochemistry, 2000, 79, 27-35.	2.6	20
122	Control of Chromatin Remodeling. Critical Reviews in Eukaryotic Gene Expression, 2000, 10, 303-25.	0.9	32
123	Tamoxifen-Bound Estrogen Receptor (ER) Strongly Interacts with the Nuclear Matrix Protein HET/SAF-B, a Novel Inhibitor of ER-Mediated Transactivation. Molecular Endocrinology, 2000, 14, 369-381.	3.7	89
124	Drosophila C-terminal Binding Protein Functions as a Context-dependent Transcriptional Co-factor and Interferes with Both Mad and Groucho Transcriptional Repression. Journal of Biological Chemistry, 2000, 275, 37628-37637.	3.4	75
125	Rapid Induction of Histone Hyperacetylation and Cellular Differentiation in Human Breast Tumor Cell Lines following Degradation of Histone Deacetylase-1. Journal of Biological Chemistry, 2000, 275, 35256-35263.	3.4	84
126	The Human Factors YY1 and LSF Repress the Human Immunodeficiency Virus Type 1 Long Terminal Repeat via Recruitment of Histone Deacetylase 1. Journal of Virology, 2000, 74, 6790-6799.	3.4	330

#	Article	IF	CITATIONS
127	Signal transduction pathways and chromatin structure in cancer cells. Journal of Cellular Biochemistry, 2000, 79, 27-35.	2.6	1
128	Control of Chromatin Remodeling. Critical Reviews in Eukaryotic Gene Expression, 2000, 10, 24.	0.9	3
129	Increased Ser-10 Phosphorylation of Histone H3 in Mitogen-stimulated and Oncogene-transformed Mouse Fibroblasts. Journal of Biological Chemistry, 1999, 274, 24914-24920.	3.4	248
130	Direct Visualization of the Human Estrogen Receptor α Reveals a Role for Ligand in the Nuclear Distribution of the Receptor. Molecular Biology of the Cell, 1999, 10, 471-486.	2.1	233
131	Control of histone modifications. , 1999, 75, 141-148.		116
132	Role of covalent modifications of histones in regulating gene expression. Gene, 1999, 240, 1-12.	2.2	270
133	Purification and Characterization of Chicken Erythrocyte Histone Deacetylase 1â€. Biochemistry, 1999, 38, 5939-5947.	2.5	20
134	Regulation and regulatory parameters of histone modifications. , 1998, 72, 203-213.		87
135	Ras-associated nuclear structural change appears functionally significant and independent of the mitotic signaling pathway. , 1998, 70, 130-140.		25
136	Covalent modifications of histones: expression from chromatin templates. Current Opinion in Genetics and Development, 1998, 8, 173-178.	3.3	182
137	SAP30, a Component of the mSin3 Corepressor Complex Involved in N-CoR-Mediated Repression by Specific Transcription Factors. Molecular Cell, 1998, 2, 33-42.	9.7	196
138	Ubiquitination of Histone H3 in Elongating Spermatids of Rat Testes. Journal of Biological Chemistry, 1998, 273, 13165-13169.	3.4	127
139	Impaired Assembly of E1 Decarboxylase of the Branched-chain α-Ketoacid Dehydrogenase Complex in Type IA Maple Syrup Urine Disease. Journal of Biological Chemistry, 1998, 273, 13110-13118.	3.4	40
140	Estrogen Regulates the Association of Intermediate Filament Proteins with Nuclear DNA in Human Breast Cancer Cells. Journal of Biological Chemistry, 1998, 273, 29093-29097.	3.4	33
141	Histone Acetylation Is Required to Maintain the Unfolded Nucleosome Structure Associated with Transcribing DNA. Journal of Biological Chemistry, 1998, 273, 14516-14522.	3.4	100
142	ETO, a Target of t(8;21) in Acute Leukemia, Interacts with the N-CoR and mSin3 Corepressors. Molecular and Cellular Biology, 1998, 18, 7176-7184.	2.3	417
143	Estrogen Receptor Diminishes DNA-Binding Activities of Chicken GATA-1 and CACCC-Binding Proteins. DNA and Cell Biology, 1997, 16, 1477-1482.	1.9	3
144	Histone H1b Phosphorylation Is Dependent upon Ongoing Transcription and Replication in Normal and ras-transformed Mouse Fibroblasts. Journal of Biological Chemistry, 1997, 272, 8113-8116.	3.4	42

#	Article	lF	CITATIONS
145	Isolation and Characterization of cDNAs Corresponding to an Additional Member of the Human Histone Deacetylase Gene Family. Journal of Biological Chemistry, 1997, 272, 28001-28007.	3.4	396
146	Rapid Deubiquitination of Nucleosomal Histones in Human Tumor Cells Caused by Proteasome Inhibitors and Stress Response Inducers:Â Effects on Replication, Transcription, Translation, and the Cellular Stress Responseâ€. Biochemistry, 1997, 36, 14418-14429.	2.5	162
147	Histone Deacetylases Associated with the mSin3 Corepressor Mediate Mad Transcriptional Repression. Cell, 1997, 89, 349-356.	28.9	929
148	A complex containing N-CoR, mSln3 and histone deacetylase mediates transcriptional repression. Nature, 1997, 387, 43-48.	27.8	1,204
149	Nuclear matrix, dynamic histone acetylation and transcriptionally active chromatin. , 1997, 24, 197-207.		84
150	Nuclear matrix proteins in well and poorly differentiated human breast cancer cell lines. Journal of Cellular Biochemistry, 1997, 66, 9-15.	2.6	23
151	Novel nuclear matrix protein HET binds to and influences activity of the HSP27 promoter in human breast cancer cells. Journal of Cellular Biochemistry, 1997, 67, 275-286.	2.6	94
152	In situ footprinting of chicken histone H5 gene in mature and immature erythrocytes reveals common factor-binding sites. Chromosoma, 1996, 104, 504-510.	2.2	5
153	Properties of chicken erythrocyte histone deacetylase associated with the nuclear matrix. Biochemical Journal, 1996, 314, 631-637.	3.7	30
154	Changes in the nuclear matrix of chicken erythrocytes that accompany maturation. Biochemical Journal, 1996, 320, 257-265.	3.7	25
155	Analysis of human breast cancer nuclear proteins binding to the promoter elements of the c-myc gene. , 1996, 60, 560-571.		17
156	Histone modifications, chromatin structure, and the nuclear matrix. , 1996, 62, 149-157.		49
157	Developmental changes in transcription factors associated with the nuclear matrix of chicken erythrocytes. , 1996, 62, 454-466.		12
158	Estrogen regulation of nuclear matrix-intermediate filament proteins in human breast cancer cells. , 1996, 63, 174-184.		35
159	Novel DNase I Hypersensitive Sites in the 3′-Flanking Region of the Human c-mycGene. DNA and Cell Biology, 1996, 15, 543-548.	1.9	5
160	The Nuclear Matrix and the Regulation of Chromatin Organization and Function. International Review of Cytology, 1996, 162A, 191-250.	6.2	55
161	Protein Blotting of Basic Proteins Resolved on Acid-Urea-Triton-Polyacrylamide Gels. Springer Protocols, 1996, , 263-267.	0.3	0
162	In situ footprinting of chicken histone H5 gene in mature and immature erythrocytes reveals common factor-binding sites. Chromosoma, 1996, 104, 504-510.	2.2	0

#	Article	IF	CITATIONS
163	Differential compaction of transcriptionally competent and repressed chromatin reconstituted with histone H1 subtypes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1260, 207-214.	2.4	17
164	Increased Phosphorylation of Histone H1 in Mouse Fibroblasts Transformed with Oncogenes or Constitutively Active Mitogen-activated Protein Kinase Kinase. Journal of Biological Chemistry, 1995, 270, 20098-20105.	3.4	101
165	Histones of Chlamydomonas reinhardtii (Synthesis, Acetylation, and Methylation). Plant Physiology, 1995, 109, 393-407.	4.8	54
166	Expression and Characterization of Branched-chain α-Ketoacid Dehydrogenase Kinase from the Rat. Journal of Biological Chemistry, 1995, 270, 19861-19867.	3.4	56
167	Fibroblasts transformed by combinations ofras,mycand mutant p53 exhibit increased phosphorylation of histone H1 that is independent of metastatic potential. FEBS Letters, 1995, 377, 51-53.	2.8	26
168	Multiple functions of dynamic histone acetylation. Journal of Cellular Biochemistry, 1994, 55, 98-105.	2.6	75
169	Nuclear factor 1 is a component of the nuclear matrix. Journal of Cellular Biochemistry, 1994, 55, 252-263.	2.6	37
170	Inhibition of Transcription Selectively Reduces the Level of Ubiquitinated Histone H2B in Chromatin. Biochemical and Biophysical Research Communications, 1994, 203, 344-350.	2.1	43
171	Transcription factor GATA-1-multiprotein complexes and chicken erythroid development. FEBS Letters, 1994, 342, 273-277.	2.8	6
172	In vitro Reconstitution of the 24-meric E2 Inner Core of Bovine Mitochondrial Branched-Chain .alphaKeto Acid Dehydrogenase Complex: Requirement for Chaperonins GroEL and GroES. Biochemistry, 1994, 33, 8962-8968.	2.5	25
173	Repression of histone H5 gene expression in chicken mature erythrocytes is correlated with reduced DNA-binding activities of transcription factors SP1 and GATA-1. FEBS Letters, 1993, 331, 141-144.	2.8	10
174	C-myc gene chromatin of estrogen receptor positive and negative breast cancer cells. Molecular and Cellular Endocrinology, 1993, 91, 83-89.	3.2	15
175	Analysis of erythroid nuclear proteins binding to the promoter and enhancer elements of the chicken histone H5 gene. Nucleic Acids Research, 1992, 20, 6385-6392.	14.5	18
176	Colonic aberrant crypt foci are associated with increased expression of c-fos: the possible role of modified c-fos expression in preneoplastic lesions in colon cancer. Carcinogenesis, 1992, 13, 573-578.	2.8	54
177	Molecular cloning and cDNA sequence analysis of coho salmon stanniocalcin. Molecular and Cellular Endocrinology, 1992, 90, 7-15.	3.2	60
178	Nuclear matrix proteins bind very tightly to specific regions of the chicken histone H5 gene. Biochemistry and Cell Biology, 1992, 70, 822-829.	2.0	3
179	Acetylation and methylation of histones H3 and H4 in chicken immature erythrocytes are not directly coupled. Biochemical and Biophysical Research Communications, 1992, 185, 414-419.	2.1	10
180	Intracellular histamine and liver regeneration: High affinity binding of histamine to chromatin, low affinity binding to matrix, and depletion of a nuclear storage pool following partial hepatectomy. Biochemical and Biophysical Research Communications, 1992, 184, 840-847.	2.1	29

#	Article	IF	CITATIONS
181	Nuclear distribution of histone deacetylase: a marker enzyme for the internal nuclear matrix. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1130, 307-313.	2.4	24
182	Western blotting and immunochemical detection of histones electrophoretically resolved on acid-urea-Triton- and sodium dodecyl sulfate-polyacrylamide gels. Analytical Biochemistry, 1992, 200, 339-341.	2.4	53
183	Timing of the appearance of ubiquitinated histones in developing new macronuclei of <i>Tetrahymena thermophila</i> . Biochemistry and Cell Biology, 1991, 69, 66-71.	2.0	32
184	Ultrastructure of transcriptionally competent chromatin. Nucleic Acids Research, 1990, 18, 7015-7024.	14.5	52
185	Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochemistry, 1990, 29, 4752-4757.	2.5	146
186	Structure of polyubiquitinated histone H2A. Biochemistry, 1989, 28, 964-968.	2.5	82
187	Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry, 1989, 28, 958-963.	2.5	140
188	Changes in the histone H2A variant H2A.Z and polyubiquitinated histone species in developing trout testis. Biochemistry, 1987, 26, 4417-4421.	2.5	64
189	Efficient method for vsualization and isolation of proteins resolved in polyacrylamide gels. Journal of Chromatography A, 1984, 298, 115-121.	3.7	10
190	Two-dimensional gel systems for rapid histone analysis for use in minislab polyacrylamide gel electrophoresis, Analytical Biochemistry, 1982, 120, 276-281	2.4	56

.90 electrophoresis. Analytical Biochemistry, 1982, 120, 276-281.