Ziye Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2595609/publications.pdf

Version: 2024-02-01

516710 580821 1,264 25 16 25 h-index citations g-index papers 29 29 29 1940 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Graphene Oxide Membrane with Highly Selective Molecular Separation of Aqueous Organic Solution. Angewandte Chemie - International Edition, 2014, 53, 6929-6932.	13.8	409
2	High performance ceramic hollow fiber supported PDMS composite pervaporation membrane for bio-butanol recovery. Journal of Membrane Science, 2014, 450, 38-47.	8. 2	136
3	Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors. Chemical Communications, 2013, 49, 10326.	4.1	104
4	Bridging Hydrometallurgy and Biochemistry: A Protein-Based Process for Recovery and Separation of Rare Earth Elements. ACS Central Science, 2021, 7, 1798-1808.	11.3	71
5	Photopatternable Nanolayered Polymeric Films with Fast Tunable Color Responses Triggered by Humidity. Advanced Functional Materials, 2019, 29, 1904453.	14.9	61
6	Hollow fiber modules with ceramic-supported PDMS composite membranes for pervaporation recovery of bio-butanol. Separation and Purification Technology, 2015, 146, 24-32.	7.9	57
7	Multichannel mixedâ€conducting hollow fiber membranes for oxygen separation. AICHE Journal, 2014, 60, 1969-1976.	3. 6	36
8	Engineering cell aggregates through incorporated polymeric microparticles. Acta Biomaterialia, 2017, 62, 64-81.	8.3	36
9	Projection Microstereolithographic Microbial Bioprinting for Engineered Biofilms. Nano Letters, 2021, 21, 1352-1359.	9.1	33
10	Electroresponsive Homogeneous Polyelectrolyte Complex Hydrogels from Naturally Derived Polysaccharides. ACS Sustainable Chemistry and Engineering, 2018, 6, 7052-7063.	6.7	32
11	Techno-Economic and Life Cycle Assessments for Sustainable Rare Earth Recovery from Coal Byproducts using Biosorption. ACS Sustainable Chemistry and Engineering, 2020, 8, 17914-17922.	6.7	30
12	Ceramic hollow fiber membrane distributor for heterogeneous catalysis: Effects of membrane structure and operating conditions. Chemical Engineering Journal, 2013, 223, 356-363.	12.7	26
13	Polydimethylsiloxane (PDMS) Composite Membrane Fabricated on the Inner Surface of a Ceramic Hollow Fiber: From Single-Channel to Multi-Channel. Engineering, 2020, 6, 89-99.	6.7	23
14	Enhanced capture and release of circulating tumor cells using hollow glass microspheres with a nanostructured surface. Nanoscale, 2018, 10, 16795-16804.	5.6	21
15	Capturing an elusive but critical element: Natural protein enables actinium chemistry. Science Advances, 2021, 7, eabk0273.	10.3	19
16	Cell Isolation and Recovery Using Hollow Glass Microspheres Coated with Nanolayered Films for Applications in Resource-Limited Settings. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15265-15273.	8.0	16
17	Reversibly tunable coupled and decoupled super absorbing structures. Applied Physics Letters, 2016, 108, .	3.3	15
18	Effective reduction of non-specific binding of blood cells in a microfluidic chip for isolation of rare cancer cells. Biomaterials Science, 2018, 6, 2871-2880.	5.4	15

ZIYE DONG

#	Article	IF	CITATION
19	Nanoparticle modification of microfluidic cell separation for cancer cell detection and isolation. Analyst, The, 2020, 145, 257-267.	3.5	15
20	A benchtop capillary flow layer-by-layer (CF-LbL) platform for rapid assembly and screening of biodegradable nanolayered films. Lab on A Chip, 2016, 16, 4601-4611.	6.0	13
21	Microfluidic preparation, shrinkage, and surface modification of monodispersed alginate microbeads for 3D cell culture. RSC Advances, 2019, 9, 11101-11110.	3.6	12
22	Microbe-Encapsulated Silica Gel Biosorbents for Selective Extraction of Scandium from Coal Byproducts. Environmental Science &	10.0	12
23	Elastocapillary bundling of high aspect-ratio metallic glass nanowires. Applied Physics Letters, 2017, 111, .	3.3	8
24	Microbial Carbonation of Monocalcium Silicate. ACS Omega, 2022, 7, 12524-12535.	3.5	1
25	Biology-Based Approach for Selective Extraction of Rare Earth Elements from Coal Byproducts. , 2020, , .		O