Adrian Reyes-Prieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2592602/publications.pdf

Version: 2024-02-01

40 papers 3,096 citations

218677 26 h-index 315739 38 g-index

42 all docs 42 docs citations

times ranked

42

3076 citing authors

#	Article	IF	CITATIONS
1	Amplicon-based and metagenomic approaches provide insights into toxigenic potential in understudied Atlantic Canadian lakes. Facets, 2022, 7, 194-214.	2.4	3
2	A personal cost of cheating can stabilize reproductive altruism during the early evolution of clonal multicellularity. Biology Letters, 2022, $18, \ldots$	2.3	7
3	High Sequence Divergence but Limited Architectural Rearrangements in Organelle Genomes of Cyanophora (Glaucophyta) Species. Journal of Eukaryotic Microbiology, 2021, 68, e12831.	1.7	O
4	Winogradsky columns as a strategy to study typically rare microbial eukaryotes. European Journal of Protistology, 2021, 80, 125807.	1.5	4
5	Seasonality and distribution of cyanobacteria and microcystin toxin genes in an oligotrophic lake of Atlantic Canada. Journal of Phycology, 2021, 57, 1768-1776.	2.3	3
6	Plastid Genomes from Diverse Glaucophyte Genera Reveal a Largely Conserved Gene Content and Limited Architectural Diversity. Genome Biology and Evolution, 2019, 11, 174-188.	2.5	16
7	Comparative Plastid Genomics of Glaucophytes. Advances in Botanical Research, 2018, 85, 95-127.	1.1	6
8	The Plastid Genome of <i>Polytoma uvella</i> Is the Largest Known among Colorless Algae and Plants and Reflects Contrasting Evolutionary Paths to Nonphotosynthetic Lifestyles. Plant Physiology, 2017, 173, 932-943.	4.8	33
9	The plastid genomes of nonphotosynthetic algae are not so small after all. Communicative and Integrative Biology, 2017, 10, e1283080.	1.4	5
10	Complete chloroplast genomes of the Chlamydomonas reinhardtii nonphotosynthetic mutants CC-1375, CC-373, CC-4199, CC-2359 and CC-1051. Mitochondrial DNA Part B: Resources, 2017, 2, 405-407.	0.4	2
11	When the lights go out: the evolutionary fate of freeâ€living colorless green algae. New Phytologist, 2015, 206, 972-982.	7.3	60
12	Massive and Widespread Organelle Genomic Expansion in the Green Algal Genus Dunaliella. Genome Biology and Evolution, 2015, 7, 656-663.	2.5	31
13	The Glaucophyta: the blue-green plants in a nutshell. Acta Societatis Botanicorum Poloniae, 2015, 84, 149-165.	0.8	31
14	Origin and Evolution of the Sodium -Pumping NADH: Ubiquinone Oxidoreductase. PLoS ONE, 2014, 9, e96696.	2.5	75
15	Alternatives to vitamin B1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages. ISME Journal, 2014, 8, 2517-2529.	9.8	69
16	The Mitochondrial Genomes of the Glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: Multilocus Phylogenetics Suggests a Monophyletic Archaeplastida. Genome Biology and Evolution, 2014, 6, 2774-2785.	2.5	37
17	Molecular markers from different genomic compartments reveal cryptic diversity within glaucophyte species. Molecular Phylogenetics and Evolution, 2014, 76, 181-188.	2.7	21
18	Marine algae and land plants share conserved phytochrome signaling systems. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15827-15832.	7.1	108

#	Article	IF	Citations
19	Zn-bis-glutathionate is the best co-substrate of the monomeric phytochelatin synthase from the photosynthetic heavy metal-hyperaccumulator Euglena gracilis. Metallomics, 2014, 6, 604.	2.4	13
20	Nucleotide substitution analyses of the glaucophyte Cyanophora suggest an ancestrally lower mutation rate in plastid vs mitochondrial DNA for the Archaeplastida. Molecular Phylogenetics and Evolution, 2014, 79, 380-384.	2.7	14
21	Endosymbiotic and horizontal gene transfer in microbial eukaryotes. Mobile Genetic Elements, 2012, 2, 101-105.	1.8	19
22	Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 2012, 492, 59-65.	27.8	377
23	<i>Cyanophora paradoxa</i> Genome Elucidates Origin of Photosynthesis in Algae and Plants. Science, 2012, 335, 843-847.	12.6	371
24	Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes. Scientific Reports, 2012, 2, 955.	3.3	44
25	Red and Green Algal Origin of Diatom Membrane Transporters: Insights into Environmental Adaptation and Cell Evolution. PLoS ONE, 2011, 6, e29138.	2.5	44
26	Differential Gene Retention in Plastids of Common Recent Origin. Molecular Biology and Evolution, 2010, 27, 1530-1537.	8.9	102
27	Interrelationships of chromalveolates within a broadly sampled tree of photosynthetic protists. Molecular Phylogenetics and Evolution, 2009, 53, 202-211.	2.7	35
28	Multiple Genes of Apparent Algal Origin Suggest Ciliates May Once Have Been Photosynthetic. Current Biology, 2008, 18, 956-962.	3.9	115
29	Chlamydiae Has Contributed at Least 55 Genes to Plantae with Predominantly Plastid Functions. PLoS ONE, 2008, 3, e2205.	2.5	119
30	Phylogeny of Nuclear-Encoded Plastid-Targeted Proteins Supports an Early Divergence of Glaucophytes within Plantae. Molecular Biology and Evolution, 2007, 24, 2358-2361.	8.9	60
31	Phylogenomic Analysis Supports the Monophyly of Cryptophytes and Haptophytes and the Association of Rhizaria with Chromalveolates. Molecular Biology and Evolution, 2007, 24, 1702-1713.	8.9	218
32	The Origin and Establishment of the Plastid in Algae and Plants. Annual Review of Genetics, 2007, 41, 147-168.	7.6	394
33	How do endosymbionts become organelles? Understanding early events in plastid evolution. BioEssays, 2007, 29, 1239-1246.	2.5	136
34	Phylogeny of Calvin cycle enzymes supports Plantae monophyly. Molecular Phylogenetics and Evolution, 2007, 45, 384-391.	2.7	75
35	Minimal plastid genome evolution in the Paulinella endosymbiont. Current Biology, 2006, 16, R670-R672.	3.9	91
36	Cyanobacterial Contribution to Algal Nuclear Genomes Is Primarily Limited to Plastid Functions. Current Biology, 2006, 16, 2320-2325.	3.9	107

#	Article	IF	CITATIONS
37	The Mitochondrial Oxidative Phosphorylation Proteome of Chlamydomonas reinhardtii Deduced from the Genome Sequencing Project: Table I Plant Physiology, 2005, 137, 447-459.	4.8	78
38	Genetic Correction of Mitochondrial Diseases: Using the Natural Migration of Mitochondrial Genes to the Nucleus in Chlorophyte Algae as a Model System. Annals of the New York Academy of Sciences, 2004, 1019, 232-239.	3.8	15
39	On the evolutionary origins of apicoplasts: revisiting the rhodophyte vs. chlorophyte controversy. Microbes and Infection, 2004, 6, 305-311.	1.9	28
40	A Green Algal Apicoplast Ancestor. Science, 2002, 298, 2155-2155.	12.6	130