E N Jack Brookshire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2592195/publications.pdf

Version: 2024-02-01

34 1,889 19 32
papers citations h-index g-index

37 37 3470
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil, 2015, 396, 1-26.	3.7	424
2	COUPLED CYCLING OF DISSOLVED ORGANIC NITROGEN AND CARBON IN A FOREST STREAM. Ecology, 2005, 86, 2487-2496.	3.2	128
3	Convergence of soil nitrogen isotopes across global climate gradients. Scientific Reports, 2015, 5, 8280.	3.3	127
4	Nitrogen limitation on land: how can it occur in Earth system models?. Global Change Biology, 2015, 21, 1777-1793.	9.5	124
5	Long-term decline in grassland productivity driven by increasing dryness. Nature Communications, 2015, 6, 7148.	12.8	109
6	Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecology Letters, 2012, 15, 9-16.	6.4	105
7	Sustained losses of bioavailable nitrogen from montane tropical forests. Nature Geoscience, 2012, 5, 123-126.	12.9	92
8	Maintenance of terrestrial nutrient loss signatures during inâ€stream transport. Ecology, 2009, 90, 293-299.	3.2	85
9	Plant biomass and species composition along an environmental gradient in montane riparian meadows. Oecologia, 2004, 139, 309-317.	2.0	76
10	LIVESTOCK EXCLUSION AND BELOWGROUND ECOSYSTEM RESPONSES IN RIPARIAN MEADOWS OF EASTERN OREGON. , 2004, 14, 1671-1679.		75
11	Direct effects of temperature on forest nitrogen cycling revealed through analysis of long-term watershed records. Global Change Biology, 2011, 17, 297-308.	9.5	66
12	Atmospheric N Deposition Increases Organic N Loss from Temperate Forests. Ecosystems, 2007, 10, 252-262.	3.4	60
13	Opportunities and Trade-offs among BECCS and the Food, Water, Energy, Biodiversity, and Social Systems Nexus at Regional Scales. BioScience, 2018, 68, 100-111.	4.9	53
14	Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon. Ecology, 2017, 98, 1491-1497.	3.2	49
15	Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecological Monographs, 2020, 90, e01409.	5 . 4	47
16	Mycorrhizal fungi as drivers and modulators of terrestrial ecosystem processes. New Phytologist, 2017, 213, 996-999.	7.3	38
17	Dissolved nutrient exports from natural and humanâ€impacted <scp>N</scp> eotropical catchments. Global Ecology and Biogeography, 2016, 25, 378-390.	5.8	33
18	The greening of the Northern Great Plains and its biogeochemical precursors. Global Change Biology, 2020, 26, 5404-5413.	9.5	25

#	Article	IF	CITATIONS
19	Gradients of Anthropogenic Nutrient Enrichment Alter N Composition and DOM Stoichiometry in Freshwater Ecosystems. Global Biogeochemical Cycles, 2021, 35, e2021GB006953.	4.9	22
20	Shifting stoichiometry: Longâ€ŧerm trends in streamâ€dissolved organic matter reveal altered C:N ratios due to history of atmospheric acid deposition. Global Change Biology, 2022, 28, 98-114.	9.5	22
21	Scaling of Physical Constraints at the Root-Soil Interface to Macroscopic Patterns of Nutrient Retention in Ecosystems. American Naturalist, 2014, 183, 418-430.	2.1	19
22	Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical forest. Scientific Reports, 2019, 9, 7571.	3.3	19
23	Connections among soil, ground, and surface water chemistries characterize nitrogen loss from an agricultural landscape in the upper Missouri River Basin. Journal of Hydrology, 2018, 556, 247-261.	5.4	17
24	Ecosystem Consequences of Tree Monodominance for Nitrogen Cycling in Lowland Tropical Forest. PLoS ONE, 2013, 8, e70491.	2.5	16
25	Long-term snowpack manipulation promotes large loss of bioavailable nitrogen and phosphorus in a subalpine grassland. Biogeochemistry, 2015, 124, 319-333.	3.5	13
26	Global bounds on nitrogen gas emissions from humid tropical forests. Geophysical Research Letters, 2017, 44, 2502-2510.	4.0	12
27	Isotopic signals in an agricultural watershed suggest denitrification is locally intensive in riparian areas but extensive in upland soils. Biogeochemistry, 2022, 158, 251-268.	3.5	8
28	Methane efflux from an American bison herd. Biogeosciences, 2021, 18, 961-975.	3.3	7
29	Toward an urgent yet deliberate conservation strategy: sustaining social-ecological systems in rangelands of the Northern Great Plains, Montana. Ecology and Society, 2021, 26, .	2.3	6
30	Water quality, nutrients, and stable isotopic signatures of particulates and vegetation in a mangrove ecosystem exposed to past anthropogenic perturbations. Regional Studies in Marine Science, 2020, 35, 101208.	0.7	4
31	Aboveground and belowground responses to cyanobacterial biofertilizer supplement in a semiâ€arid, perennial bioenergy cropping system. GCB Bioenergy, 2021, 13, 1908-1923.	5.6	4
32	Large contribution of woody plant expansion to recent vegetative greening of the Northern Great Plains. Journal of Biogeography, 2022, 49, 1443-1454.	3.0	3
33	Negative traitâ€based association between abundance of nitrogenâ€fixing trees and longâ€ŧerm tropical forest biomass accumulation. Journal of Ecology, 2021, 109, 966-974.	4.0	1
34	Repeated Fire Shifts Carbon and Nitrogen Cycling by Changing Plant Inputs and Soil Decomposition Across Ecosystems. Bulletin of the Ecological Society of America, 2020, 101, e01698.	0.2	0