List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2591673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origin of the Temperature Oscillation in Turbulent Thermal Convection. Physical Review Letters, 2009, 102, 044503.	7.8	112
2	Morphological Evolution of Thermal Plumes in Turbulent Rayleigh-Bénard Convection. Physical Review Letters, 2007, 98, 074501.	7.8	92
3	Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2017, 814, 165-184.	3.4	88
4	How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2018, 836, .	3.4	80
5	Measured Instantaneous Viscous Boundary Layer in Turbulent Rayleigh-Bénard Convection. Physical Review Letters, 2010, 104, 104301.	7.8	75
6	Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. Journal of Fluid Mechanics, 2009, 630, 367-390.	3.4	74
7	Cascades of Velocity and Temperature Fluctuations in Buoyancy-Driven Thermal Turbulence. Physical Review Letters, 2006, 97, 144504.	7.8	73
8	Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Science Advances, 2020, 6, eaaz8239.	10.3	67
9	Prandtl–Blasius temperature and velocity boundary-layer profiles in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2010, 664, 297-312.	3.4	64
10	Thermal boundary layer structure in turbulent Rayleigh–Bénard convection in a rectangular cell. Journal of Fluid Mechanics, 2013, 721, 199-224.	3.4	57
11	Aspect ratio dependence of heat transport by turbulent Rayleigh–Bénard convection in rectangular cells. Journal of Fluid Mechanics, 2012, 710, 260-276.	3.4	49
12	Counter-gradient heat transport in two-dimensional turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2013, 737, .	3.4	45
13	Flow reversals in two-dimensional thermal convection in tilted cells. Journal of Fluid Mechanics, 2018, 849, 355-372.	3.4	44
14	Enhanced heat transport in partitioned thermal convection. Journal of Fluid Mechanics, 2015, 784, .	3.4	43
15	Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence. Journal of Fluid Mechanics, 2008, 598, 361-372.	3.4	42
16	Temporal evolution and scaling of mixing in two-dimensional Rayleigh-Taylor turbulence. Physics of Fluids, 2013, 25, .	4.0	37
17	Horizontal structures of velocity and temperature boundary layers in two-dimensional numerical turbulent Rayleigh-Bénard convection. Physics of Fluids, 2011, 23, 125104.	4.0	36
18	Experimental investigation of longitudinal space–time correlations of the velocity field in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2011, 683, 94-111.	3.4	34

#	Article	IF	CITATIONS
19	Influence of spatial arrangements of roughness elements on turbulent Rayleigh-Bénard convection. Physics of Fluids, 2020, 32, .	4.0	31
20	The -dependence of the critical roughness height in two-dimensional turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2021, 911, .	3.4	29
21	Scale-to-scale energy and enstrophy transport in two-dimensional Rayleigh–Taylor turbulence. Journal of Fluid Mechanics, 2016, 786, 294-308.	3.4	24
22	Comparative experimental study of local mixing of active and passive scalars in turbulent thermal convection. Physical Review E, 2008, 77, 056312.	2.1	23
23	Universality of Local Dissipation Scales in Buoyancy-Driven Turbulence. Physical Review Letters, 2010, 104, 124301.	7.8	23
24	Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection. Physical Review E, 2017, 96, 023105.	2.1	23
25	Experimental investigation of turbulent Rayleigh-Bénard convection of water in a cylindrical cell: The Prandtl number effects for <i>Pr</i> â€^> 1. Physics of Fluids, 2020, 32, .	4.0	23
26	On non-Oberbeck–Boussinesq effects in Rayleigh–Bénard convection of air for large temperature differences. Journal of Fluid Mechanics, 2020, 889, .	3.4	21
27	Penetrative turbulent Rayleigh–Bénard convection in two and three dimensions. Journal of Fluid Mechanics, 2019, 870, 718-734.	3.4	20
28	Phase decomposition analysis on oscillatory Rayleigh–Bénard turbulence. Physics of Fluids, 2021, 33, 045108.	4.0	18
29	Flow structures of turbulent Rayleigh–Bénard convection in annular cells with aspect ratio one and larger. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1291-1298.	3.4	17
30	Experimental techniques for turbulent Taylor–Couette flow and Rayleigh–Bénard convection. Nonlinearity, 2014, 27, R89-R121.	1.4	16
31	Turbulent drag modification in open channel flow over an anisotropic porous wall. Physics of Fluids, 2020, 32, .	4.0	16
32	Turbulent vertical convection under vertical vibration. Physics of Fluids, 2022, 34, .	4.0	16
33	Dynamic coupling between carrier and dispersed phases in Rayleigh–Bénard convection laden with inertial isothermal particles. Journal of Fluid Mechanics, 2022, 930, .	3.4	15
34	Kinetic and thermal energy dissipation rates in two-dimensional Rayleigh-Taylor turbulence. Physics of Fluids, 2016, 28, .	4.0	13
35	Turbulent Rayleigh–Bénard convection in an annular cell. Journal of Fluid Mechanics, 2019, 869, .	3.4	13
36	Stabilizing/destabilizing the large-scale circulation in turbulent Rayleigh–Bénard convection with sidewall temperature control. Journal of Fluid Mechanics, 2021, 915, .	3.4	13

#	Article	IF	CITATIONS
37	Disentangle plume-induced anisotropy in the velocity field in buoyancy-driven turbulence. Journal of Fluid Mechanics, 2011, 684, 192-203.	3.4	12
38	Shear-induced modulation on thermal convection over rough plates. Journal of Fluid Mechanics, 2022, 936, .	3.4	12
39	An efficient parallel algorithm for DNS of buoyancy-driven turbulent flows. Journal of Hydrodynamics, 2019, 31, 1159-1169.	3.2	11
40	Tomographic particle image velocimetry flow structures downstream of a dynamic cylindrical element in a turbulent boundary layer by multi-scale proper orthogonal decomposition. Physics of Fluids, 2020, 32, .	4.0	11
41	Predicting micro-bubble dynamics with semi-physics-informed deep learning. AIP Advances, 2022, 12, .	1.3	11
42	Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence. Physical Review E, 2014, 90, 043012.	2.1	10
43	Controlling flow reversal in two-dimensional Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2020, 891, .	3.4	10
44	Massive heat transfer enhancement of Rayleigh-Bénard turbulence over rough surfaces and under horizontal vibration. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	3.4	10
45	Spectra and structure functions of the temperature and velocity fields in supergravitational thermal turbulence. Physics of Fluids, 2022, 34, .	4.0	9
46	Modulation of turbulent Rayleigh-Bénard convection under spatially harmonic heating. Physical Review E, 2022, 105, .	2.1	9
47	Intermittency measurement in two-dimensional bacterial turbulence. Physical Review E, 2016, 93, 062226.	2.1	8
48	Transport modes of inertial particles and their effects on flow structures and heat transfer in Rayleigh–Bénard convection. Physics of Fluids, 2022, 34, .	4.0	8
49	Drag reduction of turbulent channel flows over an anisotropic porous wall with reduced spanwise permeability. Applied Mathematics and Mechanics (English Edition), 2019, 40, 1041-1052.	3.6	6
50	Horizontal convection in a rectangular enclosure driven by a linear temperature profile. Applied Mathematics and Mechanics (English Edition), 2021, 42, 1183-1190.	3.6	6
51	The heat transfer enhancement by unipolar charge injection in a rectangular Rayleigh–Bénard convection. AIP Advances, 2022, 12, .	1.3	6
52	Taylor dispersion in two-dimensional bacterial turbulence. Physics of Fluids, 2017, 29, 051901.	4.0	5
53	Measurements of heat transport by turbulent Rayleigh-Bénard convection in rectangular cells of widely varying aspect ratios. Science China: Physics, Mechanics and Astronomy, 2013, 56, 989-994.	5.1	4
54	Scaling of maximum probability density function of velocity increments in turbulent Rayleigh-Bénard convection. Journal of Hydrodynamics, 2014, 26, 351-362.	3.2	4

#	Article	IF	CITATIONS
55	Flow modulation and heat transport of radiatively heated particles settling in Rayleigh–Bénard convection. Computers and Fluids, 2022, 241, 105454.	2.5	4
56	Lagrangian coherent structures and their heat-transport mechanism in the turbulent Rayleigh-Bénard convection. Science China Technological Sciences, 2022, 65, 966-976.	4.0	3
57	The driven cavity turbulent flow with porous walls: Energy transfer, dissipation, and time-space correlations. Journal of Hydrodynamics, 2021, 33, 712-724.	3.2	2
58	The Influence of Anisotropic Sediment Layer on Dissolved Oxygen Transfer in Turbulent Flows. Water Resources Research, 2021, 57, e2020WR027932.	4.2	1
59	Thermal convection in a tilted rectangular box. AIP Advances, 2021, 11, .	1.3	1
60	Tuning turbulent convection through rough element arrangement. Journal of Hydrodynamics, 0, , 1.	3.2	0